1.加法法则: (1)同号两数相加,取相同的符号,并把它们的绝对值相加; (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 可使用 ①加法交换律:两个数相加,交换加数的位置,和不变;即:a+b=b+a; ②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变;即:(a+b)+c=a+(b+c)。 2.减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b) 3.乘法法则: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。 (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。 (3)乘法可使用 ①乘法交换律:两个数相乘,交换因数的位置,积不变,即:ab=ba; ②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即:(ab)c=a(bc); ③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即:a(b+c)=ab+ac。 4.除法法则: (1)两数相除,同号得正,异号得负,并把绝对值相除。 (2)除以一个数等于乘以这个数的倒数。 (3)0除以任何数都等于0,0不能做被除数。 5.乘方:所表示的意义是n个a相乘,即an,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数,乘方与开方互为逆运算。