表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式 公式运用 可用于某些分母含有根号的分式: 1/(3-4倍根号2)化简: 1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23 [解方程] x^2-y^2=1991 [思路分析] 利用平方差公式求解 [解题过程] x^2-y^2=1991 (x+y)(x-y)=1991 因为1991可以分成1×1991,11×181 所以如果x+y=1991,x-y=1,解得x=996,y=995 如果x+y=181,x-y=11,x=96,y=85同时也可以是负数 所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995 或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85 有时应注意加减的过程。 常见错误 平方差公式中常见错误有: ①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”) ②混淆公式; ③运算结果中符号错误; ④变式应用难以掌握。 三角平方差公式 三角函数公式中,有一组公式被称为三角平方差公式: (sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B) (cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B) 这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。 注意事项 1、公式的左边是个两项式的积,有一项是完全相同的。 2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。 3、公式中的a.b可以是具体的数,也可以是单项式或多项式。 例题 一,利用公式计算 (1)103×97 解:(100+3)×(100-3) =(100)^2-(3)^2 =100×100-3×3 =10000-9 =9991 (2)(5+6x)(5-6x) 解:5^2-(6x)^2 =25-36x^2