一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50E(X)=72; Y:73,70,75,72,70E(Y)=72。 平均成绩相同,但X不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”。 其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动 二.方差的性质 1.设C为常数,则D(C)=0(常数无波动); 2.D(CX)=C2D(X)(常数平方提取); 证: 特别地D(-X)=D(X),D(-2X)=4D(X)(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X)和D(Y),第三项展开后为 当X、Y相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 方差公式: 平均数:M=(x1+x2+x3+…+xn)/n(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值) 方差公式:S²;=〈(M-x1)²;+(M-x2)²;+(M-x3)²;+…+(M-xn)²;〉╱n 三.常用分布的方差 1.两点分布 2.二项分布 X~B(n,p) 引入随机变量Xi(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布:其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到 工人乙废品数少,波动也小,稳定性好。 方差的定义: 设一组数据x1,x2,x3······xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)²;,(x2-x拔)²;······(xn-x拔)²;,那么我们用他们的平均数s2=1/n【(x1-x拔)²;+(x2-x拔)²;+·····(xn-x拔)²;】来衡量这组数据的波动大小,并把它叫做这组数据的方差。