新一轮中考复习备考周期正式开始,贤知助手学校为各位考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:二元一次方程的解法》,仅供参考!
二元一次方程的解法
1、直接开平方法:
直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.
例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解:9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0(a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2
方程左边成为一个完全平方式:(x+)2=
当b^2-4ac≥0时,x+=±
∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)
解:将常数项移到方程右边3x^2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+()2=+()2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2=.
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
∴a=2,b=-8,c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
∴原方程的解为x1=,x2=.
更多学习资料,学习指导,课程咨询,售后服务,
您可以点击贤知助手学校,贤知助手学校欢迎您的浏览和学习,您的关注是我们前进的动力!