在下列乘法算式中,每个字母代表0~9的一个数字,而且不同的字母代表不同的数字:
  ABCDE
  ×F
  ______________
  GGGGGG
  G代表0~9中哪一个数字?
  (提示:G×111111可能有哪些因数?G是不是F的倍数?代表哪个数字?)
  答 案
  F×ABCDE=GGGGGG。
  F×ABCDE=G×111111。
  在从2到9的整数中,只有3和7能整除111111。
  F×ABCDE=G×3×7×5291。
  如果G是F的一个倍数,则ABCDE将是一个各位数字全部相同的六位数。因此G不是F的倍数。
  于是:
  (a)F不会等于0,否则C也将等于0,从而成为F的倍数。
  (b)F不会等于1,否则G就成为F的倍数。
  (C)F不会等于2,否则G就会成为2的倍数(因为2要整除G×llllll),从而成为F的倍数。
  (d)F不会等于4,否则G就会成为4的倍数(因为4要整除G×llllll),从而成为F的倍数。
  (e)F不会等于8,否则G也将等于8(因为8要整除G×1lllll),从而成为F的倍数。
  (f)F不会等于5,否则G也将等于5(因为5要整除G×llllll}从而成为F的倍数。
  (g)如果F=3,则ABCDE=G×7×5291=G×37037。37037中有个0,这说明任何一位数乘以这个数将使积ABCDE的各位数字中出现重复。因此F不会等于3。
  (h)如果F=6,则ABCDE×2=G×7×5291=G×37037。于是G一定是2的倍数。令G/2=M,则ABCDE=M×27037。根据(g)中的推理,F不会等于6。
  (i)如果F=9.则ABCDE×3=G×7×5291=G×37037。于是G一定是3的倍数。令G/3=M则ABCDE=M×37037。根据(g)中的推理,F不会等于9。
  (j)因此F=7。于是,ABCDE=G×3×5291=G×15873。由于题目中那个乘法算式所包含的七个数字各不相同,因此G不会等于1、5或7。由于ABCDE只是个五位数,所以G不会等于8或9。既然F不等于0,那G也不等于O。因此G只可能等于2、3、4或6。
  相应的四种情况是:
  F=7,G=2,ABCDE=31746;
  F=7,G=3,ABCDE=47619;
  F=7,G=4,ABCDE=63492;
  F=7,G=6,ABCDE=95238。
  其中只有最后一种可使那个乘法算式中的七个数字各不相同。于是,可得那个乘法算式如下:
  95238
  ×7
  ———————
  666666
  
  因此G代表的数是6。

推荐文章

车辆租赁合同书

车辆租赁合同书出租方:  承租方:  一、租赁车辆状况...

中考化学知识点:金属制品的防锈原理及方法

金属制品的防锈原理及方法:  (1)防锈原理根据铁的锈...

评论区(暂无评论)

我要评论

昵称
邮箱
网址
0/200
没有评论
可按 ESC 键退出搜索

0 篇文章已搜寻到~