初中数学学习方法:对比

(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:

给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。

(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。

例如:1,9,25,49,(),(),的第n为(2n-1)2

(三)看例题:

A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1

B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关 即:2n

(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。

例:2、5、10、17、26……,同时减去2后得到新数列:

0、3、8、15、24……,

序列号:1、2、3、4、5

分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1

(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。

例 : 4,16,36,64,?,144,196,… ?(第一百个数)

同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。

(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。

(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

推荐文章

高考英语书面表达句子:旅游与交通

  98. We should strictly fo...

初中数学学习方法:调整心态,正确对待考试

初中数学学习方法:调整心态,正确对待考试首先,应把主要...

评论区(暂无评论)

我要评论

昵称
邮箱
网址
0/200
没有评论
可按 ESC 键退出搜索

0 篇文章已搜寻到~