物理知识系列讲座(三)——物理学与能源技术3——物理学与能源技术能源是是社会生产和国民经济的重要物质基础,因此人们把它看作国民经济发展的动力、现代生产的血液。随着世界经济的发展和人口的增长,对能源的需求急剧增加。按现在的能源消耗速度,全球煤炭将在200~300年内被采尽,石油将在30~40年后用完,天然气将于60年后耗尽,这些化石燃料是非再生能源,人类已面临日趋严重的“能源危机”。虽然随着勘探和开采技术的进步,会有新的资源被发现,但不会根本改变上述状况,这就要求人们必须不断开发新的能源。煤、石油、天然气既是用量极其巨大的常规能源,又是宝贵的化工原料,且储量有限。此外,这些化石燃料在利用过程中向大气排放大量的SO2、CO2、氮氧化物、粉尘等污染物,造成酸雨、温室效应、臭氧层破坏等严重的环境问题。太阳能、氢能、化学能、水能、风能、核能等可再生能源和新能源的开发利用可以缓解能源危机,改善能源结构,从而有助于上述问题的解决。能源技术是关于能源的开发、输运、贮存、利用及节能的手段与方法的综合。物理学是能源技术的基础,18世纪初蒸汽机的发明和利用、19世纪初电能的使用、20世纪中叶以来对原子能的利用等无不以物理学的发展为前提,各种新能源的开发利用、新的能量转换技术和节能技术的实现同样有赖于物理学理论和实验的进展。可以说,能源技术的过去、现在和将来都与物理学密切相关。本节除介绍能源概况外,还将重点介绍热能、机械能、电能、太阳能、氢能、生物质能、核能的开发利用及相关物理基础。一、 能源的分类能源指能量的来源和各种提供能量的物质资源。地球上的能源形形色色,分类方法多种多样。按能量的形成和来源分,能源有三类。第一类是来自地球外天体的能量,其中主要是太阳辐射能及与此有关的能源如风能、水能、煤、石油、天然气、生物能等。例如水能,在水循环过程中,海水吸收太阳能,蒸发为水蒸气,上升到高空,具有势能,水汽输送到陆地上空,形成降水,水在流动过程中,势能转化为动能,可用于发电,所以说水能来自太阳辐射。其它几种能源也类似。第二类是来自地球内部的能量,包括地热能、地球上的核燃料。第三类是来自地球与天体相互作用的能量,如潮汐能。按能源成因和转换传递过程分类,可分为一次能源和二次能源。一次能源是指没有经历任何转换过程的能源,包括所有天然存在而技术上又可以开发利用的各种能量资源,如煤、石油、天然气、生物燃料、水能、核能、海洋能、风能等。一次能源转换之后所提供的能源称为二次能源,如煤气、汽油、电能、焦炭、蒸汽、沼气等等。在进行储量评价时,又分为可再生能源和不可再生能源。可再生能源是指自然界能有规律地不断补充、永不枯竭的能源,如地热能、太阳能、风能、水能等。不可再生能源是指要经过几十万年甚至上亿年地质时期才聚集形成,在现有储量用完前得不到补充的能源,如煤、石油、天然气、核能等。按开发利用状况,可将能源分为常规能源和新能源。常规能源是指技术上比较成熟、目前已广泛使用的能源,如煤、石油、天然气、水能、生物能(如薪柴)等。新能源是指目前尚未大规模使用,有待进一步研究、开发和利用的能源,如核能、太阳能、地热能、风能、海洋能、氢能等。但是这种划分是相对的,现在的常规能源曾是过去的新能源,而现在的新能源亦会成为未来的常规能源;有的能源对一些国家来说可能是新能源,而对有些国家来说却可能是常规能源。例如核裂变能在20世纪50年代是新能源,但现在不少国家已把它列为常规能源。我国和一些发展中国家,核裂变能的利用还在初期,仍把它看作新能源。此外,已长期广泛应用的能源,如果采用了更系统的方法或更先进的技术,也可以称为新能源,如烧煤的磁流体发电系统。根据能源使用过程对环境的污染程度,把造成污染较小的能源叫做清洁能源,如太阳能、水能、风能、氢能等;把造成较大环境污染的能源叫做非清洁能源,如煤、油页岩、石油等。清洁与否在这里也是相对的,例如石油比煤的污染小,石油相对于煤来说便是清洁能源。从能源的上述分类我们可以清楚地看到,开发利用新能源、可再生能源和清洁能源是缓解能源危机、减少环境污染的有效途径,是能源技术发展的主要方向。二 、能源的开发利用随着人们对能量形式的认识不断深入和近代大工业生产发展的需要,开始了能源的大规模开发利用。按物质运动形式,大致可将能量形式划分为:热能、机械能、电能、化学能及核能等。在一定条件下,各种形式的能量可以相互转化,这是开发和合理使用各种能源的基础。1. 热能几千年来,人们一直广泛利用各种燃料燃烧产生的热量来冶炼金属、烧制各种材料和用品、照明、取暖、烹制食物等,但这只是热能的直接利用。1712年英国工程师纽科曼发明了活塞式蒸汽机,实现了热能到机械能的转换,这是继火的利用后人类能源利用史上的又一里程碑。1765年英国机械师瓦特发明了分离冷凝器,对纽科曼蒸汽机进行了改良,使转换效率由1%提高到4%,并于1769年取得了专利。后来又经过多次改进,瓦特蒸汽机的效率和功率进一步提高,结构也逐渐完善,因而迅速被各工业部门采用,淘汰了纽科曼蒸汽机。瓦特蒸汽机的广泛应用使劳动者的数量和体能不再成为制约生产力发展的决定性因素,从而导致了第一次产业革命。到19世纪初,由于蒸汽机的进一步发展,迫切需要知道热和功的关系及对热机作功作出理论上的分析,所以热与机械功之间的转换得到了广泛研究。1824年卡诺提出了卡诺循环,从理论上给出了热机效率的上限及其提高途径。1843~1878年,焦耳通过大量实验测得了精确的热功当量值。1850年克劳修斯等发现热力学第二定律,1854年他提出熵的概念及计算公式。1851年,开尔文从热功转换角度表述热力学第二定律。众多物理学家经过几十年的潜心研究于19世纪中后期建立了能量守恒定律、热力学和统计物理学。提高热机效率的过程促进了热力学的发展,而物理学的发展又为热机性能的进一步提高提供了理论基础。热机技术的应用为人类提供了新的动力源,极大地推动了社会生产力的发展。事实上,现代社会生产和生活中的机械功主要还是由热能转化而来的,煤、石油、天然气等仍是产生这类热能的主要燃料。因此寻找燃烧值高的燃料和放能多的化学反应、提高热机效率等便成为热能开发的重要途径。(1)煤、石油、天然气这是目前人们使用的主要能源,在世界一次能源消费结构中约占93%左右。这些能源是由远古时期埋藏于地下的动植物经过漫长的地质作用而形成的,所以也称为化石能源或矿物能源,它们实质上是由古代生物固定下来的太阳能。煤既是动力燃料,又是炼焦、制煤气、合成氨和炭素材料等的重要化工原料,素有“工业粮食”之称。用煤做燃料可以获取热量或提供动力。世界工业史上,以燃煤驱动瓦特蒸汽机使世界能源结构由生物质能时代进入矿物能源时代。此外,燃煤热能还可转化为电能(火力发电)进行廉价便捷的长途输送。煤燃烧残留的煤矸石和灰渣可作建筑材料。虽然煤燃烧造成环境污染,但在未来的100年中,煤仍然是一种主要的能源,洁净燃煤技术是当前能源开发的热点。石油又称原油,是当今世界最重要的动力能源,又是近代有机化工的重要原料。石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前的主要能源,占当今世界能源消耗总量的60%,此外,炼油还可提供润滑油、液化石油气、石油焦、石蜡、沥青等产品。以炼油产品为原料可生产多种有机化工原料(约200种)、高分子合成材料 (塑料、橡胶、合成纤维等)及无机化工原料(氨、尿素、硝酸等)。 从能源、材料、农业、各工业部门到日常生活等诸多领域,石化产品的身影无处不在,所以石油被誉为“工业的血液”。天然气是世界公认的优质高效能源和可贵的化工原料。早在3 000多年前,我国就已钻凿气井、以气熬盐做饭,比煤的使用早了1 000年。天然气的主要成份是甲烷(CH4),作为燃料具有开采成本低、运输和使用方便、价格相对稳定、燃烧值高、能源效率高(燃煤电厂的能源利用率不超过38%,而天然气发电效率可达52%以上)、资源丰富、用途广泛(发电、城市燃气、工业燃料、汽车燃料等)、清洁(相对煤和石油而言污染极少)等优点。 天然气作为化工原料可生产上千种化工系列产品。(2)地热能地球是一个大热库,平均每深入地壳1km,温度升高20~30oC,每年以温泉和火山岩浆等形式自动散发到地面的热量相当于燃烧370亿吨标准煤产生的热量。地热能是指地球内部释放到地表的能量。地球上的地热资源极其丰富,其总储量相当于煤储量的近两亿倍。以目前的钻井技术,钻到地下10 km的深度,估计地热能总量相当于世界年能源消费量的400多万倍。可利用的地热资源是地热蒸气、地下热水和热岩层。地热蒸气的温度在100oC左右,可直接利用。地下热水一般在地下两千多米深处,温度80℃左右,可直接用于浴疗、地热采暖、地热养殖、地热温室等方面或作为染织、制革、造纸、烘干、工业锅炉等的用水,也可降低压力使之变成蒸气,推动汽轮发电机发电。热岩层的能量可以用水等介质带出来再加以利用。人类对地热能的开发和利用,主要集中于发电。目前,世界上已有二十多个国家建立了地热发电站。我国地热资源丰富,开发利用也较早,已在各地建立了多座地热能发电站。地热能的利用,占地很少,成本低,无废渣、粉尘污染,用后的弃(尾)水既可综合利用,又可回注到地下储层,达到增加压力保护储层、保护地热资源的双重目的。世界各国对地热能的开发利用还处在初级试验阶段,且利用温度仅限于地下2km处。要使更深处的更多地热能得到利用,必须依靠地球物理、力学、热学、电学、物理学及其它相关科学技术的发展。2. 电能电能是由各种天然能源通过人工过程由热能、机械能、化学能等形式转化而来的二次能源。可用于生产电能的天然能源包括煤、石油、天然气、太阳能、风能、水能、潮汐能、地热能、核燃料等。电能由于输送快捷、使用方便(可方便地转化为其它形式的实用能源,且转换效率高、能精确控制)、安全可靠、利用过程污染小而在能源中占有极为重要的地位,成为应用最广泛的能源。交流电可以方便地通过变压器提高电压进行远距离输送,但输送过程的电能损失接近30%,此外还存在严重的终端浪费,因此亟需提高输电效率和终端利用效率。电力工业是国民经济的基础产业和重要的公用事业,电能在我国当前的总体能源结构中处于基础和中心的地位。为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电能在终端能源中的比例。21世纪,电力的战略地位将变得越来越重要。3. 机械能源 海洋能人类对机械能源的利用历史悠久,水车、风车是人类最早使用的以机械能源为动力源的动力装置。当前,机械能源开发的对象除水力、风力外,还包括潮汐能、海浪能等海洋能,开发方向是将这些能源转化为电能。(1)水能和风能水能和风能都是由太阳辐照而产生的可再生的清洁能源,利用方式主要是发电。水力发电原理是将水的势能转变为电能。因此水力发电要拦河筑坝、修建水库,而这又可起到防洪、供水、发展航运等多重作用。我国水力资源居世界第一位,但我国水力资源分布不均,70%多集中在西南地区,四川、西藏、云南三省,虽然客观上制约了水电的开发和利用,但为集中开发和规模外送创造了条件。我国人均化石能源资源较少,相对而言,水力资源具有较大优势。从我国能源资源特点来看,优先发展水电是必须坚持的能源发展方针。太阳辐照大气层,各处大气受热不均而产生温差,从而引起大气对流运动,形成风能。因此,风能就是空气流动的动能。太阳辐射到地球的能量约有20%转化为风能。风能的特点是:①能流密度小,仅为水的1/1000,因而设备庞大;②风速多变,难以维持稳定的输出功率,但一些国家的变速设计已可在风速不断变化的情况下,保持发出的交流电稳定正常;③时空分布不均;④利用简单、无污染、可再生。在节能环保的大趋势下,世界风电迅猛发展,近年装机容量每年增长近30%。预计到2020年,年发电量将占全球发电总量的12%,有可能成为世界未来最重要的替代能源。(2)海洋能海洋蕴藏有极为丰富的可再生能源,海水中的氢和核聚变燃料氚、氘,以及包括潮汐能、波浪能、海流能、温差能和盐差能在内的海洋能都取之不尽、用之不竭。海洋能主要来源于太阳辐照、地球与其它天体的相互作用,虽然能流密度小、稳定性差、开发利用工艺复杂、对设备材料和技术要求高、成本高,但因为其总蕴藏量大、分布地域广阔、变化有规律可循、无污染、可再生而成为新能源开发的热点。1)潮汐能 潮汐是海水受月球和太阳等天体的引力作用而产生的周期性涨落现象。海水的这种涨落包含垂直运动(潮汐)和水平运动(潮流)。潮汐能就是由潮流的动能转化而来的海水势能,能量与潮差(潮汐形成的水位差)大小和潮量成正比。世界上潮差的较大值约为13~15m,其能量密度远低于水力发电,但一般说来,平均潮差在3m以上就有实际应用价值。潮汐能转变为动能可以推动机械装置或推动水轮机发电。潮汐能发电研究己有百年之久,在海洋能开发中技术最成熟,规模最大。2)波浪能 海面在风力作用下产生波浪。波浪能就是海面波浪的动能和势能,能量大小与波高的平方和波动水域面积成正比,能量传递速率和风速、连续吹风时间、风与水相互作用的距离等诸多因素有关,因此在海洋能中它的稳定性最差。波浪能开发利用的设想已有上百年历史,方案五花八门,专利成百上千,但基本原理不外乎:①利用物体在波浪作用下的振荡和摇摆运动,②利用波浪压力的变化,③利用波浪沿岸爬升将波浪能转换成水的势能。1964年日本制成世界上第一盏用波力发电的航标灯,标志着波浪能开发进入实用阶段。经过70年代对多种波能装置进行的实验室研究和80年代进行的实海况试验及应用示范研究,波浪发电技术已接近实用化水平。全世界有20多个国家开展波能利用研究,相继建成了20几个波能转换装置或电站。波浪发电在今后10年内有望达到目前风能利用的经济技术水平,成为规模化、商业化的新能源。3)温差能 温差能是指海洋表层海水和深层海水之间以温差形式储存的巨大热能。低纬度地区,海洋表层温度为25~28oC,500~1 000m深处的温度为4~7oC,存在约20oC的垂直温差,利用这一温差可以实现热力循环并发电。但热力学理论告诉我们,循环效率是很低的,这也是温差能利用的难点,好在其资源总量巨大,能量稳定。目前开展温差发电研究的有美、日、法、英等十几个国家,美国和日本已在海上建立了多座温差试验电站或装置,技术已基本成熟,但尚未达到商业化水平。我国在上世纪80年代开始温差能利用研究,目前还处于实验室研究阶段。海洋温差能利用装置除发电之外,还可以作为海水淡化厂或海洋采矿、海上城市或海洋牧场的支持系统,这是一个多学科交叉的系统工程问题。总之,温差能的开发应以综合利用为主。4)海流能 由于不同海域的温度和盐度不同造成的海水密度和压力差异、地球自转产生的惯性离心力、海面风力作用等原因而形成的海水定向流动,称为海流。海流能是指海水流动的动能,能量与流速的平方和流量成正比,能流密度约为风能的1 000倍。一般说来,最大流速大于2米/秒的水道,其海流能就有实际开发价值。海流能发电原理和风力发电相似,风力发电装置几乎都可以改造成海流发电装置,但由于装置放在水下,故必须解决安装维护、电力输送、防腐、安全性等一系列关键技术问题。20世纪70年代,海流能利用研究才开始起步,目前仍处于试验阶段,参与的国家也只有美、日、中、英、加拿大、意大利等少数几个。5)盐差能 在江河入海口,淡水和咸水会自发扩散、混合,若隔以半透膜,则淡水向海水一侧渗透可产生渗透压力,其间蕴含的能量称为盐差能,其能量与渗透压和渗透流量成正比。淡水和咸水之间的渗透压力能产生240m的水位差,在死海甚至能产生5 000m的水位差,再把水泻放,使势能转化为动能,便可利用水轮机发电。但开发难度很大,一些国家从上世纪70年代开始研究试验,如今虽然技术实现了盐差能发电,但存在投资过大、成本太高等缺点,离实用化还有很大距离。4. 太阳能太阳是一个永不枯竭的能源库,每年辐射到地球表面的能量相当于目前世界能源年消耗量的1.3万倍,是地球上能量的主要来源,如动植物体内储存的能量、化石能源、水能、风能、波浪能、海流能、温差能等都直接或间接来自太阳。太阳能资源无穷无尽、分布不受任何人的控制与垄断、利用过程清洁安然、利用规模可大可小,所以其开发利用备受关注。但由于时空分布不均、能流密度低、设备庞大、占地多、投资大等不足而受到了制约。近几十年,材料技术、电子技术等的发展使太阳能利用的规模和范围日渐扩大,能量转换效率逐步提高。随着科学技术的不断进步,太阳能终将成为未来能源家族的重要成员。太阳表面温度6 000K,中心温度可能高达1.5×107K,高温使氢、氦等组成物质成为等离子体。太阳引力把高温等离子体约束在一起发生核聚变反应,释放出巨大的能量,这就是太阳能的来源。太阳质量极其巨大,因而产生的能量仍非常惊人。太阳每天“燃烧”约52万亿吨氢,质量亏损3 720亿吨,释放能量3.35×1031J,数量巨大,但太阳总质量为2×1027吨,保证了它能稳定存在几百亿年。太阳源源不断地向宇宙空间辐射能量,到达地球大气层的仅22亿分之一,其中约53%被大气层反射和吸收,只有47%左右到达地球表面。能开发利用的太阳能是到达地球表面的部分,利用方式主要有光热转换、光电转换和光化学转换。(1)光热转换将太阳辐射能转换成可利用的热能谓之光热转换,其基础是热箱原理。如图9-3-1所示,箱体侧面和底部用隔热材料密封,以防止热量散失,内表面均涂成黑色,以增强吸热能力。热箱顶部封上玻璃或其它透明材料,太阳光充分透过玻璃射入箱内,太阳辐射能被涂黑的内表面吸收并转换为热能。由于箱壁隔热,且玻璃对箱内产生的长波热辐射有阻挡作用,从而使箱内温度不断升高。由于箱体不可能完全隔热,所以热箱温度通常在200oC以下。热箱原理已广泛应用于非聚光式太阳能热利用设备中,如太阳能热水器、太阳能温室、太阳能干燥器、太阳能蒸馏器等。图9-3-1 热箱除热箱外,还可利用聚光镜收集太阳能。太阳光经聚光凹面镜反射聚焦后,能量密度大为增加,焦点处的温度高达几百甚至上千摄氏度,这正是太阳灶、太阳能高温炉等的集热原理。利用热交换器和汽轮发电机还可将这种高密度热能转变为电能,实现太阳热发电。目前世界上已建成十几座太阳能热电站,并开始商业化运作。(2)光电转换1954年,美国贝尔实验室发明了将太阳辐射能直接转换为电能的装置——太阳能电池。它是光电转换的主要器件,是目前太阳能光电利用最基本的方式,其物理基础是“光生伏特效应”(参见本章第二节)。(3)光化学转换利用光和物质相互作用发生化学反应,即光化学效应,将太阳能转化为化学能或电能,称为光化学转换。光化学电池就是利用光化学效应,使电解液内形成电流而对外供电的。人类使用的化石能源就是绿色植物通过光合作用将太阳能转化变成化学能而保留下来的遗产。光合作用对太阳能的利用效率极高,若能实现对这一过程的控制,则人造粮食、人造燃料将不再是梦想。太阳能光化学效应的另一重要应用是制氢,目前有两种途径:①用半导体作光催化剂,让太阳光直接分解水,产生氢和氧;②利用太阳能通过繁殖极快的藻类或其它植物和微生物进行生物制氢。5. 氢能氢是自然界最丰富的元素,约占宇宙质量的80%。作为能源,氢的优势非常明显:①燃烧值为1.42×108J/kg,是汽油的3倍;②燃烧速度快、火焰温度高,有利于获得高功率,可用于切割和焊接金属;③燃烧产物是水和少量氮氧化物,处理后不会污染环境;④资源丰富,仅地球上的水中的氢就有2.31×1020吨,燃烧生成的水又可继续制氢,可谓“取之不尽,用之不竭”;⑤利用形式多,既可燃烧产生热能,在热力发动机中产生机械功(现有内燃机稍加改装即可使用),又可用于燃料电池;⑥能以气态、液态和固态形式贮存,适用于各种应用环境。由于上述优点,人们认为氢能将和聚变能一起构成21世纪最主要的能源。但氢能的开发利用还需解决两个难题:一是廉价易行的制氢工艺;二是廉价便捷的贮存和运输方式。制氢的方法很多,但都处在不断探索中。目前主要通过化石燃料改性制氢,但要消耗化石能源。从资源角度看,水是最佳制氢原料。电解水制氢的技术较为成熟,转换效率也较高,但要消耗大量电能,因而不能从根本上解决问题。最理想的方案是利用太阳能制氢,除前面提到的光催化方法外,还可利用聚光式太阳能装置产生的高温对水蒸气进行热分解,制得氢气和氧气。氢的储存方法很多,目前公认最好的办法是用贮氢合金进行存储(见第二节)。鉴于氢能的种种优点,自20世纪90年代以来,很多国家拿出巨额资金进行研究开发。有些专家甚至认为,2050年前氢能将取代石油成为主要能源,人类将进入 “氢能经济”时代。6. 生物质能绿色植物通过光合作用合成有机物,将太阳能转化为化学能而贮存在生物质内部的能量称为生物质能,包括薪柴、农作物秸秆、水生植物、油料植物、城市和工业有机废弃物、动物粪便等,优点是资源丰富、廉价易得、燃烧容易、可再生、污染少,缺点是热值及热效率低、体积大而不易运输。生物质能一直是人类赖以生存的重要能源,在世界能源结构中约占14%,在不发达地区占60%以上,仅次于煤炭、石油和天然气,在整个能源系统中占有重要地位。目前,生物质能利用方法主要有:①把生物质压制成特定形状的燃料,以便集中利用和提高热效率;②用热化学转换法,获得木炭、焦油和可燃气体等高品位能源产品;③用生物化学转换法,即利用微生物的发酵作用,获得沼气、酒精等能源产品;④利用油料植物生产生物油。生物质能技术的研究开发已成为能源领域的重大热门课题之一,受到世界各国政府与科学家的关注,并制订了相应的开发研究计划。许多国家的生物质能技术和装置都已达到商业化应用程度,实现了规模化产业经营。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到本世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。7. 核能核能又叫原子能,是原子核在发生变化时由于质量亏损而释放出来的能量,包括裂变能和聚变能两种主要形式。核能是能源家族的新成员。1938年,德国人哈恩和斯特拉斯曼用慢中子轰击铀核,发现了铀核的裂变和放出的巨大能量。1939年,费米和居里夫妇等人发现了铀核连续裂变的链式反应,这是原子弹和原子反应堆的基本原理,从而找到了利用核能的途径。1942年美国建成世界上第一座核反应堆,预示着核能时代到来。1945年第一颗原子弹爆炸成功,1954年前苏联建成第一座试验核电站,此后核能被广泛应用于发电、供热以及为潜艇和大型船舰提供动力。全球目前已有30多个国家共建立了400多座核电站,核电已占世界总发电量的17%。核能之所以迅速发展,原因在于:①其能量巨大而集中,易于获得大功率;②燃料运输费用少,地区适应性强;③运行成本低,清洁安然;④资源丰富,能长期大规模替代常规能源,从根本上解决能源问题。正因为如此,所以任何一个可持续的能源计划都包括核能的开发利用。(1)核裂变能核裂变是重核分裂成较轻原子核的过程。裂变模式有两种:一是少数很重的原子核的自发裂变;二是用中子轰击原子核引发裂变,同时放出2~3个中子。裂变过程相当复杂,已经发现裂变产物有35种元素,放射性核素有200种以上。235U分裂成两个碎片核的方式就有60多种,下面是其中的两种:,一次自发裂变释放的能量约200MeV,但由于是“自发”的,因而无法控制。核物理实验和理论表明,A>100(Z >44)的原子核被足够能量的中子轰击发生裂变才会释放能量,且A越大放出的能量越多。裂变产生的新中子(也称为快中子)继续引发新的裂变,形成自持链式反应,使大量原子核在很短时间内裂变,释放出巨大的能量。原子弹和核反应堆就是通过链式反应释放核能的,前者因为不对反应进行控制而形成爆炸,产生大规模杀伤破坏作用;要实现原子能的和平利用,就必须对链式反应加以控制,使其平稳进行,按要求释放能量,后者正是这样的装置。235U是最常用的核燃料,但天然铀由99.282%的238U、0.712%的235U和微量的236U三种同位素组成。若用它做核燃料,则235U裂变放出的快中子绝大部分与238U碰撞。能量大于1.1MeV的快中子能使238U裂变,但只有少数快中子引起238U裂变,其余的在能量降到几十电子伏特时被238U吸收,因此238U不能产生链式反应。任何能量的中子与235U作用都能引起裂变,且能量越低裂变概率越大,0.025eV的热中子引发裂变的概率最大。但在天然铀中,裂变产生的快中子(平均能量2Mev)在慢化到热中子之前就被吸收了,链式反应无法进行。为使链式反应持续进行,通常采用两种办法。一种是以浓缩铀为燃料,即提高235U的含量,使裂变中子有更多机会与235U作用而引发裂变;另一种是采用中子慢化技术,即利用中子与质量数较小的原子核碰撞会很快损失能量的特点,在燃料中加入重水、轻水、石墨等慢化剂,使快中子快速变为热中子,以免被238U吸收。以热中子维持链式反应的反应堆称为热中子堆。此外,由于镉对热中子有很强的吸收能力,因而通过镉棒在反应堆芯中的插入、抽出可以达到对裂变反应速度的控制。238U产生不了链式反应,故不能直接用作核燃料,但它吸收中子变成239U,再经两次衰变成为239Pu:,,。239Pu与235U类似,快中子和热中子都能使其裂变,且能量越低裂变效率越高,因此239Pu可以做反应堆的核燃料。应用快中子增殖堆技术不仅可将238U转化为核燃料239Pu,还能将232Th转化为核燃料233U,这样238U、贫铀、232Th都可作为核裂变能源,大大延长核裂变能的使用期限。我国已成为世界上少数拥有快堆的国家之一。重核裂变产生的放射性废物难以处理,核燃料的储量也不很丰富,开采和提炼又十分困难。因此,核裂变能还不是人类最理想的长期能源。(2)核聚变能轻原子核聚合成较重的原子核称为核聚变,该过程中释放的能量称为核聚变能。自然界中最容易实现的聚变反应是氘、氚之间的聚变,这种反应在太阳上已经持续了150亿年,其总效果可用表示为:。与核裂变相比,核聚变有如下优势:①能量更大、更集中,聚变反应中每个核子贡献的能量为3.6MeV,而裂变反应中每个核子贡献的能量仅约0.85 MeV;②核聚变燃料储量极其丰富,仅海水中的氘(约40万亿吨)就可供人类使用几百亿年,此外用地球上的2000多亿吨锂制造的氚也能供我们使用几十万年,因而一旦实现可控核聚变,人类就将从根本上解决能源问题;③聚变产物是氦,没有放射性,污染小。要使两个轻核发生聚变反应,必须使它们靠近到10-14m以内,核力才能把它们结合成新的原子核。但参加反应的原子核带电,靠得愈近,静电斥力愈大。这样两个原子核要克服巨大斥力而结合,就必须具有足够大的速度,即需具有足够高的温度。两个氘核的聚变反应,温度必须高达1亿度,氘核与氚核间的聚变反应,温度必须在五千万度以上。这固然增加了聚变反应的难度,但当某一环节出现问题时,燃料温度就会下降,聚变反应就会自动中止,因而也提高了安然性。在核聚变的高温条件下,物质已全部电离形成高温等离子体。在聚变过程中,需对高温等离子体进行充分的约束,使其达到一定密度并维持“足够长”的时间,以便充分地发生聚变反应,放出足够多的能量。但约束高温高密等离子体绝非易事,这要求所用“容器”既耐高温又不能导热,否则温度立即下降,聚变反应停止,人们至今未能找到符合要求的具体材料。目前,约束这种等离子体的方法有三种:引力约束(如太阳)、磁约束(如托卡马克)、惯性约束(如氢弹)。作为能源,聚变反应释放的能量应大于产生和加热等离子体本身所需的能量及其在这个过程中损失的能量,这样才能维持聚变反应所需的极高温度,并向外界输出能量。核聚变能是当今人类最理想的、也是一种最新的能源。遗憾的是,我们还无法实现对核聚变反应的控制,将其做成实用能源。三、能源的现状与未来 新能源的开发纵观人类社会发展全过程,从火的使用、蒸汽机的发明、电能的应用到核能的开发,能源技术的每一次突破都导致了社会生产力的飞跃和人类文明的巨大进步。如今,能源生产和消费在很大程度上反映和决定了一个国家的生产力水平的高低,因此能源问题也就成了一个具有战略意义的重大问题。随着社会的不断进步,人们对能源的需求不断增长,能源结构也不断变化。1900年全世界能源消费总量为7.75亿吨标准煤,2004年增长到了180亿吨。20世纪60年代以前,世界一次能源消费量最大的是煤,其次是石油和天然气。60年代以后,石油所占的比例急剧增加,到70年代末,石油和天然气的消费量占到了70%。化石能源仍是当前世界能源消费的主体,而我们正面临化石能源将在短时期内枯竭的严峻形势,为此世界各国都积极研究开发风能、海洋能、太阳能、氢能、核能等可再生的新能源,并在不同程度上取得了可喜成果。我国的能源消费总量约占全世界的11%,仅次于美国而居世界第二位,但人均消费量却不及美国的10%,且能源利用经济效率远低于发达国家水平,能源结构不合理。我国的能源特点是煤炭、各种可再生能源储量丰富,石油、天然气资源短缺,资源分布不均,煤炭占终端能源消费的比重太高,可再生能源开发利用率太低。我国能源工业面临着增加供给与保护环境的双重压力。为实现2020年GDP比2000年翻两番的总体目标,我国政府把依靠技术进步、发展能源工业、提高能源利用率、降低煤烟型污染作为能源工业可持续发展战略的重点,坚持节约与开发并举、大力调整能源生产与消费结构、大力发展煤炭洁净技术、积极发展新能源和可再生能源。太阳能、核能等可再生能源和新能源的开发利用是人类解决能源危机的必然选择。
物理知识系列讲座(三)——物理学与新材料技术2——物理学与新材料技术材料技术是探讨材料的制备、结构、性能、功效及其相互关系的技术,如今业已成为不同工程领域产业化的共性关键技术。当代每一项重大技术的出现都有赖于新材料的发展。例如:半导体材料的发现和发展导致了微电子工业、大规模集成电路、高速运算计算机等的出现;高温材料及高性能结构材料的出现使航空航天技术快速发展;低损耗光导纤维使当今蓬勃发展的光线通讯得以实现;等等。材料科学是物理、化学、冶金学、金属学、陶瓷学、医学、生物学及计算科学等多学科交叉融合的结果,同时也是一个正在蓬勃发展中的学科,它将随各相关学科的发展而不断得到充实和完善。发展材料科学的目的在于开发新材料,提高材料的性能和质量,并进行合理利用,使其更好地为人类的社会生产和生活服务。材料技术的基本原理根植于凝聚态物理学、物理化学与合成化学。物理学及物理技术为材料科学提供了强有力的理论和实验研究手段,材料的组织、结构及性能的研究都离不开物理学。本节将简要介绍有关材料的基本知识及物理学在材料科学中的应用,并着重介绍几种重要材料。一、材料—人类赖以生存和发展的物质基础 材料的分类材料是有一定配比的若干相互作用的元素组成的、具有一定结构层次和确定性质,并能用于制造器件、设备、工具和建筑物等的物质系统。人类发展的历史证明,材料是人类社会进步的物质基础和主要标志或里程碑。纵观人类发现和利用材料的历史,每一种重要的新材料的发现和广泛应用,都会给社会生产力和人类生活水平带来巨大的变化,使人类支配和改造自然的能力向前迈进一大步。材料的发展导致时代的变迁,因此人类的历史曾以使用的主要材料来进行划分,如石器时代、铜器时代和铁器时代等。早在一百万年前,人类开始用石头做工具,使人类进入旧石器时代。大约一万年前,人类能对石头加工,使石头成为精致的器皿或工具,从而使人类进入新石器时代。在新石器时代,人类开始用皮毛遮身。八千年前,中国开始用蚕丝做衣服。四千五百年前,印度人开始种植棉花。这些都标志着人类使用材料促进人类文明进步。此外,人类还使用竹、木、骨等原始天然材料,不经或稍许加工而制成工具或用具。这是材料发展的初始阶段,其特点是人类单纯选用天然材料。人类还处于新石器时代,就已发明用粘土成型,再火烧固化而得到陶器,用作器皿或装饰品。陶器的出现,是对人类文明的一大促进。在烧制陶器的过程中,又偶然发现了铜和锡,实际上是铜和锡的氧化物在高温下被炭还原的产物,进而生产出色泽鲜艳且能浇铸成型的青铜,使人类进入了青铜时代。公元前13—14世纪前,人类已开始使用铁。3000年前的铁器比青铜器更为普遍,人类开始进入铁器时代。到春秋末期,中国的生铁技术遥遥领先于其他国家,如生铁退火而制成的韧性铸铁以及生铁炼钢技术发明,促进了当时生产力的大发展,推动了整个世界的文明与进步。18、19世纪蒸汽机、电动机的发明对金属材料提出了更高的要求,同时对钢铁冶金技术产生了更大的推动作用。炼钢技术大大促进了机械制造、交通铁路及纺织工业的发展。随之各种特殊钢如高速钢、硅钢及不锈钢相继问世,铜、铝也得到大量应用,其它金属和合金也都出现,从而使金属材料在20世纪占据了主导地位。铜、铁和其它合金的发现与应用是材料发展的第二阶段。在这一阶段,金属(主要是铁和钢)确立了工业材料的绝对权威。这个阶段的特点是人类从自然界提取有用的材料。随着科学技术和工业的发展,人类对材料提出了质量轻、功能多、价格低等要求。与此同时,人类已经掌握了丰富的知识和生产技术,已能人为地制造出自然界许多不存在的材料,以便满足社会各种各样的要求。这是材料发展的第三阶段即人工材料合成时代。塑料、各种高分子材料、先进陶瓷、新型复合材料、超晶格材料等各种高性能材料层出不穷。70年代,材料与能源、信息并列为现代文明的三大支柱。80年代,人们又把新材料、信息技术和生物技术并列为新技术革命的主要标志。可见,一个国家的材料的品种、数量和质量,已成为衡量其科学技术、国民经济水平和国防力量的重要象征之一。材料品种繁多、用途广泛,使得材料的分类也变得十分复杂,目前还没有统一的标准。从物理化学属性来分,有金属材料、无机非金属材料、有机高分子材料及复合材料,或者分为无机材料或有机材料;从组织结构上分,可分为单晶、多晶、非晶、准晶和液晶;从状态上分,有固相、液相材料,单相、多相、复合材料,宏观、介观(团簇、纳米)材料;从用途上分,可分为电子材料、能源材料、建筑材料、生物材料、核材料、航空航天材料等。从材料的来源,可以分为天然材料和人工合成材料,从大自然中直接获取天然有形物质进行简单加工或直接应用的材料如沙石、木材、石材等称为天然材料,通过物理化学加工方法研制出的材料如合金、玻璃、陶瓷、合成高分子等称为人工合成材料。更常见地,是将材料分为结构材料和功能材料两大类。结构材料主要以理学性能为基础、以制造受力构件为应用目的的材料(当然也要考虑物理化学性能如光泽、导热性、抗腐蚀、抗氧化等),通常包括建筑材料、机械制造材料,航天航空材料,用于制造工具、机器、车辆、房屋建造、铁路、桥梁、飞机、航天器等;功能材料指具有光、电、磁、声、热、化学、生物等特定功能和性质的材料,如导电材料、磁性材料、介电材料、发光材料、光电材料、压电材料、声光材料、超导材料、仿生材料、智能材料等等。通常,它们对外界环境如光、电、磁、热、压力、气氛等反应灵敏。利用它们可以制造具有记录、储存、信息传输或转换能量的功能元器件,在电子、激光、能源、通讯、生物医学等许多新技术领域有广泛的应用。现代高新技术依赖于功能材料,同时又刺激着功能材料的迅速发展。结构材料常常以材料形式为最终产品,如钢材、塑料、玻璃等;而功能材料一般用于非结构目的,常常以元件形式为最终产品,如传感器件、电子器件等。现代社会对研制新一代材料提出了结构与功能相结合的要求,即材料不仅能作为结构材料使用,而且具有特殊的或多种功能。同一种构件、设备或器件可能是结构材料和功能材料的结合,例如航天航空器既有特殊的结构材料,又有特殊的功能材料。功能材料是现代材料中比较高级的材料,按照其使用性能可以分为9大类型:电学功能材料、磁学功能材料、光学功能材料、声学功能材料、力学功能材料、热学功能材料、化学功能材料、生物医学功能材料、核功能材料。这些功能材料还可以进一步细分,如光学功能材料包括非线性光学材料、发光材料、红外材料、感光材料、激光材料、光电材料、声光材料、磁光材料、光记录材料等。根据功能材料的应用技术领域,可分为信息材料、电工材料、电子材料、电讯材料、计算机材料、传感材料、仪表材料、能源材料、航空航天材料、生物医用材料等。还可以细分,如信息材料又可分为信息检测与获取材料、信息传输材料、信息储存材料、信息处理材料等。目前,各种新型功能材料如光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、功能复合材料、超导材料、智能材料以及生态环境材料是人们关注的新材料领域,也是各国科学工作者研究和开发的热点。传统材料和先进(或新型)材料是材料的又一种分类方法。传统材料指那些已经成熟且大批量生产与应用、价格相对较低、已有长期使用经验和数据的材料,如钢铁、水泥、塑料等。这类材料是很多支柱产业的基础,故又称为基础材料。先进材料(新型材料)是指那些正在发展、具有优异性能和应用前景、正在努力商业化或处于研制中的材料。传统材料与先进材料没有明显的界限,传统材料通过采用新技术、提高技术含量和性能、大幅度增加附加值,就成为了先进材料,先进材料经过长期应用、大批量生产以后就成为了传统材料。二、物理学—材料科学与技术的基础1.凝聚态物理——材料科学的理论基础材料物质形态一般是固体和液体。固体和液体是由大量的物质分子构成的紧密聚集态,统称为凝聚态。材料科学是以材料为研究对象的学科,研究内容包括材料的组织结构、性质、制备与应用开发。材料科学的基本原理植根于物理与化学,化学侧重于材料的合成与制备方法的研究,而物理则侧重于对材料的基本理论机制的研究。凝聚态物质系统是一个非常复杂的客体,每一立方米中包含有数量级为1029的原子、电子,而且它们之间的相互作用很强,其宏观性质是粒子之间相互作用和集体运动的总表现。将量子力学、热力学与统计物理、电磁学理论这些物理学基本原理用于研究由数目巨大的粒子构成的凝聚态物质系统的微观结构、粒子的集体运动规律、宏观性能以及外界因素对系统性质的影响便形成了凝聚态物理,因而凝聚态物理是材料科学的理论基础。凝聚态物理学就是从微观角度出发,研究凝聚态物质的结构和动力学过程及其与宏观物理性质之间的学科。材料的应用领域与应用效果取决于材料的各种性能,而材料的原子结构和电子结构是研究材料特性的两个最基本的物质层次,凝聚态物质系统内组成粒子(原子、分子)中电子的运动规律、粒子间的相互作用机制以及系统与外界发生作用的微观过程是影响其宏观性质的根本因素。这些都是凝聚态物理要解决的基本问题。只有深入研究凝聚态物质系统内部微观运动规律,才能了解材料的各种性能,从而为发展新材料开辟新的途径。材料的开发途径有两个,一是根据应用要求,设计和选择特定性能的材料,“量体裁衣”;二是从基础研究范畴发现和研究材料的各种性能,再根据其性能开发应用,创制新的材料。这都需要以凝聚态物理学为基础。材料的凝聚态结构与表征,相变热力学与动力学,缺陷,组成粒子间的结合力,物质、能量、载流子等输运机制,各种复杂条件下的性能响应等等都是凝聚态物理涉及的研究方向。凝聚态物理学的一些基本理论,如固体能带理论、点阵动力学理论、对称破缺的相变理论、元激发理论、缺陷理论和临界现象理论等都是为解释材料各种物理现象发生与性质表现的原因而建立的。物理理论和模型促进了材料科学的发展。在物理学特别是凝聚态物理与材料科学的交叉领域,重大的科学研究成果层出不穷。一方面物理学的新成就大大推动了材料和材料科学的发展,另一方面,材料和材料科学中的难题挑战并吸引着物理学家。例如,晶体管的发明是物理学与材料科学结合的典型范例,它直接基于晶体中电子的量子理论。在晶体管基础上,后来半导体器件不断小型化、集成化,不仅对材料加工技术提出了更高的要求,而且使物理学家面临建立新理论体系的挑战,如表面、界面的结构,表面态的分布等成为了科学研究的热点。又如凝聚态物理中关于原子间结合力和位错理论,不但为金属材料强度的提高指明了方向,也为改进其它材料(如半导体材料等)有关性能的改进提供了思路。几乎每一种新材料的发现和改进,都离不开凝聚态物理。总之,没有凝聚态物理的研究成果,就不会有新材料。2.现代物理技术—材料结构表征与性能检测的基本手段现代材料科学在很大程度上依赖于对材料性能与其成分及组织结构关系的理解。因此,对材料的性能的各种测试技术,对材料组织从宏观到微观不同层次的表征技术构成了材料科学与工程的重要组成部分,也是材料设计与制造工艺到获得具有满意性能的材料之间的桥梁。而材料的结构表征与性能检测又依赖于现代物理技术手段。材料的性能是指其在给定的条件下或在条件发生变化时所产生的响应,如材料的弹性模量、比热、热导率、电导率、磁性、极化率、扩散系数、耐高温性、抗腐蚀性、抗震性等。这些性质又与材料的组织形态、微观结构与成分有关。无论是性能检测,还是组织结构与成分分析,都需要各种各样的物理测量仪器。有关材料的性能检测与评价技术随着材料的发展在不断革新,测量精度也在不断提高,测量仪器的种类也很多,评价的标准也有统一的规范。这里对材料性能检测技术不做进一步的介绍。但可以肯定地说,几乎每一种材料性能检测技术都与物理学密切相关。一般说来,材料的组织结构与成分可以用材料与声波、电磁波、电子、离子、中子的相互作用所获得的各种信息来检测,这些信息构成了有关分析技术的物理基础。目前现代物理分析测试技术发展很快,但其基本原理仍大多在这些相互作用信息的范畴之内。例如,基于材料与声波的相互作用的有超声波检测仪;基于材料与电磁波相互作用的分析仪器有光学金相显微镜、x射线衍射分析仪、核磁共振仪、微波电子顺磁共振以、光电子能谱仪、穆斯堡尔谱仪、光谱仪(红外光谱仪、拉曼光谱仪、激光光谱仪等)等;基于材料与电子相互作用的有扫描电子显微镜、透射电子显微镜、正电子湮没装置等;基于材料与离子相互作用的有离子束分析仪;基于材料与中子相互作用的有中子衍射仪;但是,场离子显微镜、扫描隧道显微镜和原子力显微镜等的基本原理却是直接利用探针直接检测材料的表面微观形貌。以下简要介绍几种常用的材料的分析表征手段及应用。(1)x射线分析技术x射线与物质的相互作用将产生吸收和散射现象。X射线透过物质后将变弱即发生能量损耗,称为x射线吸收。这种吸收的产生有以下原因:a)光电效应即原子吸收x射线光子发生电离而发出光电子。该效应能获得光电子谱信息,可用于测定原子和分子轨道的结合能。b)荧光效应。x光子打出一个原子内层电子后,激发态原子中高能量轨道上的电子将填补内层空位,也将产生x射线,称为x射线荧光。可利用这种荧光光谱分析材料中所含的元素及成分。c)俄歇效应。原子内层电子被x光子打出而出现空位,较高能量电子将填充该空位,会剩余能量。这种能量可以以上述x射线荧光向外辐射,也可能使另一个核外电子脱离原子逸出,逸出的电子叫做俄歇电子。每种元素都有自己特定的俄歇电子能量谱线。因此可利用俄歇能谱作物质成分分析。由于俄歇电子能量低,一般也只来源于表面两三个原子层,故俄歇能谱是材料表面成分分析的一种重要方法。x射线与物质相互作用时,除吸收外,还可能受到散射。散射的主要机制是波长改变的康普顿散和波长不改变的相干散射(散射机制见第七章),还有晶格振动引起的热漫散射和晶体点缺陷引起的漫散射(叫黄昆散射)。康普顿散射是非相干性的,强度很弱,可不予考虑。相干散射是x射线在样品中产生衍射现象的基础。利用x射线衍射可以测定晶体结构常数(见第五章),利用黄昆散射可以研究晶体缺陷。X射线分析技术在材料科学中应用十分广泛。主要用于物相鉴定、物质成分分析、晶体点阵参数测定、晶体取向确定、晶体点阵畸变测定、缺陷分析、非晶态结构测定等。(2)电子显微分析技术人眼能够分辨清楚的最小细节是0.1~0.2mm。如果要观察更微小的细节,必须借助于显微镜。光学显微镜能使欲观察的细节放大,然而光的衍射理论表明,光学显微镜的放大倍数是有限的。提高光学显微镜的分辨本领的办法是增大孔径和减少光的波长,但增大孔径困难且可见光波长范围有限。要想改善显微镜分辨率,只有减少波长,于是就出现了电子束照明的电子显微镜。我们已经知道,电子具有波动性,在100伏左右的电压加速下的电子的波长约1A0,加速电压更高时,波长更短。显然用电子束作光源,显微镜的分辨率将更高。然而,电子和光子毕竟不同,电子是带电粒子且有静止质量,因此不能用光学透镜会聚成像。但可以用电场和磁场使电子会聚和发散,起到类似于光学透镜使光会聚和发散的作用,这就是电子透镜。电子显微镜就是用电子束照明的放大仪器,当然其结构比光学显微镜复杂的多。电子显微镜是洞察微观世界的有利工具,目前世界上的大型电子显微镜的分辨本领能达到2~3 A0,放大倍数高达120万倍。电子显微镜类型很多,细致分类困难。一般以电子束和样品相互作用来分类:利用样品透射电子的透射电镜;利用样品反射电子的反射及扫描电镜;利用样品发射电子的发射电镜;利用样品吸收电子的电子探针及扫描电镜。当一束电子打倒样品后,电子或从薄样品穿透而过,或从厚样品表面掠射而过,总之电子的行踪将发生改变。入射电子踪迹决定于物质中原子核、核外电子及所形成的电场对电子的作用。入射电子与物质作用能产生各种信息,将这些信息加以收集、整理、分析即可得到材料的微观结构和成分的资料。散射是电子与物质作用的主要过程。入射电子束与物质中原子核和核外电子发生作用时,入射电子的方向和能量可能改变,有时甚至“消失”或产生别的粒子,这些现象统称为电子散射。如果电子与物质作用后基本无能量改变,称为弹性散射。反之,电子不但改变方向,而且改变能量,则称为非弹性散射。电子弹性散射是电子衍射的基础,电子衍射的分析与x射线衍射的分析类似,布拉格方程同样是电子衍射所遵守的重要方程,利用它可以表征晶体参数。电子衍射还可以用于测定非晶态结构。电子非弹性散射所失去的能量常常以许多其他方式释放(此处不介绍),同样可以得到很多重要信息。所以,电子显微分析技术是研究材料的的重要手段。(3)扫描隧道显微镜(STM)与原子力显微镜(AFM)20世纪80年代以后,显微技术出现了新的革命,产生了以扫描隧道显微镜(STM)为代表的新一代显微镜。STM能直接观测到物质表面单个原子的立体形貌,把人们带到了原子级的微观世界。扫描隧道显微镜不同于电子显微镜。电子显微镜是利用高速电子穿进物质内部研究物质的微观结构。扫描隧道显微镜不用光源也不用透镜,其显微部件是一枚非常细而尖的探针。在物质的表面有一层阻止内部电子向外运动的势垒屏障。但量子力学告诉我们,表面内的电子能够穿过这个屏障,到达表面外形成一层电子云,这就是所谓的隧道效应。这层电子云的纵向和横向分布与样品表面的微观结构有关。所以,STM通过探针探测出这层电子云的分布,就可以观察到物体表面的微观结构。探针在样品表面移动,将会与电子云重叠。如果在探针和样品间加上电压,电子便会通过电子云形成隧道电流。隧道电流强烈地依赖着探针针头与样品表面之间的间距,例如距离改变一个原子的大小,隧道电流就会变化一千倍。当探针在表面上扫描时,可通过隧道电流的变化,利用反馈装置来调节针头与表面的间距。在保持隧道电流恒定的电路控制下,探针在表面做x、y方向扫描的同时,针尖将依表面原子的起伏而在z方向移动。这种移动经电信号放大并有计算机进行图像处理,可以得到表面原子分布的三维图象。这个图像和实际尺寸相比可以放大一亿倍,人们能清楚地看到物体表面的三维立体微观情况。STM 使人类第一次能够立体显示单个原子在物体表面的排列状况,其纵、横向分辨率分别达到0.01nm和0.2nm,从而为材料表面表征开拓了新的领域。STM的出现也为纳米科技注入了活力,使人们能够实现在纳米尺度甚至原子尺度上对物质进行微加工和对单个原子、分子的操纵、移动。1990年美国IBM公司研究人员首先用STM在金属镍表面用35个氙原子排出了“IBM”字样。1994年,中国科学院研究人员利用STM在硅单晶表面直接取走硅原子,形成了硅原子晶格背景下的书写文字。由于隧道电流的产生需要两个电极,因此STM对绝缘体表面不能直接测量。为了解决这一问题,1986年宾希尼等人在STM基础上又发明了原子力显微镜(AFM),利用针尖与样品之间的原子力(引力、斥力)随距离的变化测量样品表面微观形貌、弹性、硬度等。原子力显微镜对各种材料均可获得原子级分辨图像。此外,基于扫描探针近场技术的显微镜还有:研究磁性样品表面磁畴和磁场分布的磁力显微镜、观察微电路上电特性的静电力显微镜、光子扫描隧道显微镜等等。三、半导体材料1941年用多晶硅材料制成检波器,拉开了半导体材料应用的序幕。1947年,贝尔实验室的三位美国科学家肖克莱、巴丁和布拉顿利用半导体材料锗制成的第一个晶体三极管问世,引发了现代电子学的革命,他们三人也因此而荣获1956年的诺贝尔物理学奖。1958年半导体硅集成电路的诞生。1962年,半导体激光器问世及后来各种半导体光电器件的出现,使得半导体光电技术在半导体技术中的地位日渐提高。20世纪60年代末以来,大规模和超大规模集成电路的出现,标志着微电子学时代开始,30多年来,其发展惊人。微电子技术的突飞猛进奠定了计算机和信息技术发展的基础,将人类社会带入了信息时代。80年代开始,半导体激光器在光通信和信息存储等方面得到大量应用,形成了光电子学。普遍认为,20世纪是以微电子学为基础的电子信息时代,21世纪则是微电子学与光子技术结合的光子信息时代,从而对半导体材料提出了愈来愈高的要求。不难预见,半导体材料在未来社会中将扮演越来越重要的角色。半导体材料之所以有极为广泛的用途,是因为半导体中的电子可以做多样化的运动。半导体物理的研究阐明了电子多样化运动的规律性。关于半导体的概念,已经在第七章介绍过。这里仅简要介绍半导体器件的基本构成以及半导体材料的应用1.半导体器件的基本构成—pn结和晶体管如果把一块p型半导体和一块n 型半导体连接,在交界处就形成了pn结(图 9-2-1 )。通常是在硅片上,用不同的掺杂工艺使其一边为n型半导体,一边为p型半导体,做成pn结。pn结是许多半导体器件的基本构成单元。晶体管、集成电路、整流器、半导体激光器、发光二极管、各种光电器件、微波器件、太阳能电池等都有pn结结构。图9-2-1 平衡状态下的pn结我们知道,p型半导体中的载流子主要是空穴,n型半导体的载流子主要是电子,于是在pn结上出现载流子浓度差。浓度差将导致载流子的扩散,以至于电子由n区通过交界面向p区扩散,空穴由p区通过交界面向n区扩散。结果在界面附近p区积累负电荷,在n区积累正电荷。这样在结区便会形成由n区指向p区的电场,称为内建电场。由于内建电场的方向与载流子扩散运动方向相反,从而阻止扩散,最终将达到平衡,结区两侧的电荷数量一定,内建电场不变。内建电场的存在使电流从p到n容易(接正向电压,p极为正,n极为负),由n到p困难(接反向电压,n极为正, p极为负)。这就是pn结的单向导电性。半导体二极管就是一个pn结构成的。如果两个pn结紧密相连且其中共用中间的p区或n区,便形成pnp或npn结构,就变成了半导体三极管(图 9-2-2 )。npn型三极管有两个pn 结——发射结和集电结,三个区——发射区、基区和集电区,由三个区各引出一个电极,分别叫发射极e、基极b、集电极c。若将p型半导体做成发射区和集电区,用n型半导体做成基区,则叫pnp型三极管。二极管在电路中起开关和稳压作用,三极管在电路中起电流分配、放大和开关作用。图9-2-2 npn型三极管2.半导体材料的应用简介(1)、传统的典型半导体材料及应用硅、锗、砷化镓及碲镉汞材料是传统的典型半导体材料。硅和锗都是共价晶体,常温下化学性质稳定,温度升高时容易与氧、氯等多种物质反应,故自然界中没有游离态的硅和锗存在,我们只能从二氧化硅、硫锗铁矿等矿物中提取。用于制作半导体器件的硅和锗必须具有很高的纯度。人们现在已经制出了十一个九以上的纯硅和锗。硅是目前世界上最重要的半导体材料,95%以上的半导体器件是用硅制作的。但是在半导体工业发展的初期,唱主角的是锗,而不是硅。后来,硅之所以能取锗而代之,一是因为其资源极为丰富,成本低廉;二是因为其禁带宽度较大,外界作用改变这种杂质半导体性能的难度比其它半导体材料大,即硅半导体器件的性能较稳定;三是因为其机械强度高,结晶性好,制备工艺较成熟,可以制出高纯度的大尺寸单晶。硅是制造大规模集成电路最关键的材料。为了使自由电子在器件中的运动不受阻碍,还得把硅制成单晶。单晶硅是目前人工能获得的最纯、最完整的晶体材料。砷化镓是继锗、硅之后发展起来的第二代半导体材料,近年正以年均15%以上的速度快速增长,如今已成为除硅以外最重要的半导体材料,广泛应用于通讯、医疗、家电、办公设备、航空航天等民用及军事领域。砷化镓的禁带宽度比硅、锗都大,介电常数小,电子迁移率是硅的6倍。适于制造高频、高速的电子器件和电路。例如,用砷化镓制作的普通发光二极管和激光二极管,其发光效率高、亮度高、电压低、电流小、响应快,易与晶体管和集成电路匹配,用作固体显示器、信号显示、文字显示等器件。砷化镓隧道二极管用于计算机开关时,速度快、时间短。砷化镓最适合做场效应晶体管,振荡频率可达数百千兆赫以上,主要用于微波放大、振荡、调制和高速逻辑电路等方面。碲镉汞(Hg1-xCdxTe)是三元化合物半导体材料,物理性质随x的改变可连续地从金属变到半导体,其禁带宽度随x的增大而从HgTe的负值过度到CdTe的正值、随意可调。Hg1-xCdxTe的本征载流子浓度低,电子迁移率高,导电类型可以由本身组分的改变来调节,也可用掺杂方法来控制,适于制作光导或光伏型器件。碲镉汞本征半导体的吸收系数大,可以全部吸收几微米到几十微米波长的光,是目前制造红外探测器最理想的材料。此外,可制成高速响应器件、金属-绝缘体-半导体(MIS)或金属-氧化物-半导体(MOS)结构型的器件。碲镉汞是继硅、砷化镓之后发展起来的第三代用途广泛的半导体材料。(2)、集成电路集成电路是60年代初发明的。半导体二极管和三极管是集成电路的主要组成元件。集成电路是采用氧化、光刻、扩散、外延、离子注入等工艺,将晶体管元件和电阻器、电容器等元件,按照一定的电路连接,集成在一块半导体晶体片上。它完成特定的电路或系统功能。集成电路的集成度是指每个半导体芯片上的元件数。小规模集成电路集成度小于100,中规模集成电路集成度为100~1000,大规模集成电路的集成度为1000~105,超大规模集成电路集成度大于105。目前,纳米电子技术还将使集成度大幅度提高。集成电路的出现,大大缩小了电子设备的体积,提高了可靠性,降低了成本,延长了使用寿命。集成电路是现代计算机科学技术发展的重要基础,它使计算机小型化、运算速度提高、不断升级换代,为现代信息社会奠定了主要的物质基础。(3)、可控硅由于pn结的单向导电性,可以使输入的交流电变为输出的直流电,称为整流。一般的硅二极管,其整流后的直流电压是不能变化的,使其应用受到限制。而可控硅则可以在一定的输入交流电压下,连续随意地改变输出直流电压得大小,其应用十分广泛。可控硅的结构为三个pn结的四层元件pnpn,如图 (图 9-2-3)。当控制极g不加电压时,不论a、c极间电压正向还是反向,总有一个结处于反向电压状态,可控硅皆不导通。当加上控制电压(gc极之间)时,在较小的正向电压(ac极之间)下,突然导通,正向电流很大。而反向则不论加控制电压与否,皆不导通。用适当的线路改变改变控制电压的输入时刻,就可以改变整流电压及电流的大小,从而实现可控整流。图 9-2-3 可控硅结构示意图可控硅可用做直流调压电源、直流电机无级调速器、自动控制、触点开关、变频器等,在电子、电工、电机设备中有广泛应用。(4)、半导体微结构材料及应用半导体异质结、量子阱和超晶格材料统称为半导体微结构材料。这种材料在自然界中是不存在的,是一种人工微结构材料。在过去的十几年中,这类材料的研究呈现出一派热火朝天的景象,它们是微电子、光电子领域的新型功能材料,广泛用做激光器件、电子器件、光通讯、光计算机等。P-N结是在同一块半导体单晶中掺入不同杂质做成的,称为同质结。若在一种半导体材料A 上生长另一种半导体材料B (或金属),则两种材料的交界面就形成了所谓的异质结(图 9-2-4 a)。异质结概念是Kroemer于1963年提出来的,他建议把一个窄带隙半导体夹在两个宽带隙半导体之间,以提高注入效率和增加载流子限制,从而改进当时GaAs结型激光器的高阈值电流问题。1968年,约飞技术物理所和贝尔实验室相继研制出异质结构激光器。两种材料禁带宽度及其它特性的差异,使异质结具有一系列同质结所没有的特性,在器件设计上将得到某些同质结不能实现的功能。图9-2-4 人工微结构材料(a)异质结 (b)量子阱 (c)超晶格若两个同样的异质结背对背接起来且A、B两种半导体材料禁带宽度相差较大,如图9-2-4 b中,A的禁带宽度大,B的禁带宽度小,则B分别成了电子和空穴的“能量陷阱”。因为,B中的电子或空穴到达两边的A层时,A的能量状态较高。只要A层不太薄,电子和空穴基本上被反射回B区。电子和空穴被限制在A层内,好比落入“陷阱”(称作势阱)。一般B的厚度为几个纳米,可与电子的布罗意波长相比拟。电子在这种势阱中的运动会表现出明显的量子效应,原来在大尺寸是准连续分布的能级变成了不连续的分立能级,这被称为量子尺寸效应。上述限制电子和空穴运动的特殊能带结构被形象地称为量子阱。在量子阱中,电子做二维运动。第三维运动受限,该方向表现出量子尺寸效应,故量子阱属于二维材料。图9-2-5所示是一个典型的量子半导体器件,两个宽带隙的Al0.3Ga0.7As区中间夹一个线度为20nm的窄带隙GaAs区,两边的电极通过低阻n型GaAs区与两个Al0.3Ga0.7As区相连接。这样的三明治结构中, GaAs区在大尺寸时能量准连续分布的导带在此小尺寸的势阱中由于量子化效应分裂成分立能级(如图9-2-6所示)。若GaAs区三个方向的尺寸都很小则称为量子点。若两个方向的尺寸很小,另一个方向的尺寸很大,则叫量子线;若一个方向的尺寸很小,其余两个方向的尺寸很大就是量子阱。量子阱加上某特殊偏压后,电子波会形成驻波,产生共振效应。因而可将其作成振荡器和开关器件。使用量子开关器件可将计算机芯片的集成度提高1万倍,前景极为诱人。图9-2-5 量子半导体器件AlGaAs-GaAs-AlGaAs结构示意图图9-2-6 量子半导体器件AlGaAs-GaAs-AlGaAs能带图将两种或以上不同的薄层材料周期性地交替生长而成的人工材料称为超晶格。例如A、B两种材料,按ABABAB…周期性重复,每层厚度为纳米级,这就是一种超晶格。如果A、B是两种禁带宽度相差较大的半导体材料,这样的超晶格就是半导体多量子阱。半导体多量子阱是一种由许多异质结构成的半导体超晶格,可用于制作量子阱激光器和其它光电器件。如果在同一种半导体材料中有规则地掺入不同浓度的杂质,使能带发生周期性的弯曲,这种材料叫做半导体调制超晶格,可用于集成电路、制作半导体激光器和制作太阳能电池。除了半导体超晶格以外,还有金属和合金超晶格、非晶超晶格、介电超晶格、巨磁阻超晶格等。超晶格材料在通讯、信息传输与处理、光电探测、光计算机、激光技术等技术领域用途十分广泛。(5). 半导体光电效应及其应用物质受光照射后引起某些电性质变化的现象叫光电效应,包括光电导、光电子发射和光生伏特。光照使半导体材料的电导率升高的现象,称为光电导。原因是,半导体吸收光子引起载流子激发。当光子能量大于半导体禁带宽度时,价带电子吸收光子能量跃迁到导带,产生电子和空穴都参与导电,称之为本征光电导。如果在光照射下,附加载流子来自禁带中的杂质能级,从而改变半导体的电导率,则称为杂质光电导。利用该效应可制成光敏器件、光电摄像管、图像传感器等。半导体或金属中的电子吸收光子克服逸出功而从表面离开的现象,叫做光电子发射。利用光电子发射可制成光电发射管用于光电继电器(自动报警器等)、光电光度计、光电倍增管、电视摄像管等。在光照射下,半导体pn结两端产生电势差的现象称为光生伏特。当光子能量大于禁带宽度的光照射到pn结上时,同样会产生光生载流子。在pn结的内建电场作用下,光生电子进入n区,光生空穴进入p区,最终在p区和n区之间产生稳定的电压即光生电动势,并在接通外电路时形成电流,这就是光生伏特效应。在其它条件不变的情况下,光生电动势的大小直接反映了入射光的强度,由此可制成光度计,如照相机的曝光表。利用光伏效应制成的太阳能电池已在航天器上和日常生活中(如太阳能灶、太阳能热水器等)广泛使用,这是一种取之不尽、用之不竭的无污染能源。(6). 半导体激光器半导体激光器是一种重要的固体激光器。其特点是体积小、效率高、运行简单便宜。半导体激光器结构很简单(图9-2-7),就是一个pn结二极管,在电流正向流动时发激光。我们知道,产生激光需要两个条件,一是实现粒子数反转(材料要有特殊的能带结构和外界激发),二是要有谐振腔。硅和锗不具备发激光的特殊能带结构,而砷化镓、磷化铟、锑化镓等具备产生激光的特殊能带结构(激光波段为近红外,0.84,0.90和1.5μm)。外界激发是加上直流电源注入足够浓度的载流子。半导体激光器谐振腔是由垂直于结面的二极管两个侧面作为反射镜(解理产生的两个平行的光滑表面)组成。在阈值电流以下,普通的发光二极管中会引起注入发光,但不会发激光。图9-2-7 半导体激光器基本结构半导体激光器是光纤通讯的主要器件,而光纤通讯是未来通信发展的必然趋势,因此半导体激光器的研制倍受关注。半导体材料除上述应用外,还有许多用途,此处不再细讲。四、特殊功能合金金属与合金多用做结构材料,但有的金属和合金可用做功能材料。如电阻器用的各种低阻、中阻、高阻精密合金以及导电材料,热电偶合金(制作高温测量装置)、膨胀合金(制作温控自动保护装置、启动装置、电器开关、集成电路引线框、仪表元件等),形状记忆合金,储氢合金等。这里介绍一下储氢合金和形状记忆合金。1、储氢合金氢是一种重要的二次能源,其优点是无污染(燃烧生成水)、资源丰富(可用太阳能到海水中取氢)、发热值高。但是氢能源的开发却遇到了两个难题:制氢和储存氢。用一般的钢瓶储氢非常危险,解决储氢的重要手段是储氢合金。原理是,用金属吸收氢气生成金属氢化物,需要时加热放出氢,其过程是可逆的。储氢合金相当于储存氢的容器。储氢合金的氢密度是市售氢气瓶密度的10倍、标准状态气态氢密度的1000倍,比固态氢密度略高。例如,-269oC固态氢密度为5.3×1022(原子/cm2),而LaNi6H6.7的氢密度7.6×1022(原子/cm2)。现已研制成功的储氢合金有镧-镍合金、铁-镍合金等。2.形状记忆合金一些合金在高于某转变温度时被制成某一形状,把温度降到转变温度以下后改变其形状,当温度回升到转变温度以上时,它会按记忆恢复原状。这种现象叫做形状记忆效应。例如,用某些金属制的头饰花蕾,在阳光下开放,回到室内花蕾闭合;某些金属雕塑造型能随季节变化,表现出春夏秋冬四季主题。有的形状记忆合金的形状在高低温只能恢复一次,叫单程记忆合金。有的形状记忆合金,在高低温下能反复恢复形状,叫做双程记忆合金。目前已发现许多种形状记忆合金,还发现了一些聚合物和陶瓷形状记忆材料。形状记忆合金在工程上有重要应用,例如用形状记忆合金做套管,低温下扩径装配后升至室温而恢复原状,便结合紧密。像飞机液压系统接头、航船管道、海底输油管道、铆钉、连接件都需要形状记忆合金。五、陶瓷材料陶瓷是工程技术中应用广泛的一种材料。所谓陶瓷是指以各种粘土、石英等天然无机物为主要原料成型后在高温窑炉中烧结而成的制品,许多是金属氧化物。陶瓷有很多优良的性能,如耐高温、耐磨、耐氧化、耐腐蚀、重量轻、强度高等。其缺点是易碎。在普通陶瓷中加入15%氧化锆可以大大增加韧性,纳米陶瓷的韧性非常强。陶瓷可分为结构陶瓷和功能陶瓷。结构陶瓷指具有机械功能、热功能和部分化学功能的陶瓷。功能陶瓷指具有电、磁、光、生物功能等方面特殊性能的陶瓷,包括导电陶瓷(如氧化锆,碳化硅等)、介电陶瓷(用于制作电容器、电路器件,钛酸钡等)、超导陶瓷(在一定温度下没有电阻)、压电陶瓷(能实现机械能与电能的转换,钛酸钡等)、磁性陶瓷(具有很强的磁性,四氧化三铁等)、透明陶瓷(锆钛酸铅PZT)、气敏陶瓷(不同陶瓷的电阻对不同气体敏感,氧化锡对可燃气体敏感、氧化锆对氧气敏感、氧化钛对汽车排气敏感等)、湿敏陶瓷(电阻对湿度敏感,氧化锌、氧化铝、氧化钛等)、热敏陶瓷(电阻对温度敏感,钛酸钡、钛酸锶等)、压敏陶瓷(对电压敏感的陶瓷,碳化硅、钛酸锶等)、热释电陶瓷(把热信号转变为电信号)、电光陶瓷(实现电信号与光信号转换,钛酸钡、铌酸锂等)、磁光陶瓷(实现磁效应与光信号转换)、声光陶瓷(实现声信号与光信号转换)、生物陶瓷(如制作人工牙齿)等等。这些功能陶瓷在工业、农业、环保、通讯、军事、航海、航天航空、医学等各个技术领域都有十分广泛的应用,可用来制作各种探测器、传感器(各种信号转换与处理器件)、电子器件等。如用压电陶瓷制成水声、超声换能器(电信号与声信号转换),用于发射、接收声波,完成水下观察、通讯、探测;制作电声设备如扬声器;制作高电压发生装置如压电打火器(汽车火花塞、燃气打火器、打火机等)、引燃引爆、压电开关、小型电源、压电变压器;压电振子对某些频率信号衰减大而对另一些频率衰减小,从而实现滤波,在无线电通讯和测量仪器中有应用;制作力敏传感器、应变仪、血压计、压力计等。又如热释电陶瓷、热敏陶瓷可用于制作温度计、热辐射探测器、红外遥感装置、红外光谱仪等。功能陶瓷的应用不胜枚举。六、超导材料许多金属、合金、化合物在温度低于某一临界温度时,电阻完全消失,且成为完全抗磁性物质,这种性质称为超导电性。具有超导电性的材料称为超导体。1911年荷兰低温物理学家H.K.Onnes在研究汞的低温电阻时发现,当温度降到4.2K以下时,汞的电阻突然变为零。这一发现引起了各国科学家的极大兴趣。后来人们陆续发现一些金属、合金和化合物也具有超导性质。超导体在电阻消失前的状态叫正常态,电阻消失后的状态叫超导态。材料由正常态变为超导态的转变温度用Tc表示,称为临界温度。以下简要介绍超导体的基本性质、超导微观理论和超导材料的应用。1. 超导体的基本性质(1). 零电阻效应与临界参数所谓零电阻效应是指在临界温度Tc以下,超导体电阻突然消失的现象。为了证明超导态的零电阻现象,有人曾设计过一个实验。把金属环置于磁场中,再撤去磁场,金属环会由于电磁感应而出现电流,由于金属环有电阻,该电流会很快消失。如果把超导圆线圈放在磁场中,然后把温度降到该超导体的临界温度以下,再去掉磁场,该线圈因电磁感应会出现电流。实验结果表明,经过两年半的时间,没有看到这个电流有丝毫的衰减。经研究计算这个电流的衰减时间可达10万年以上。正常导体有电阻,维持电流需要磁场。超导体电阻为零,只要电流一经产生,维持电流便不需要时间,因此超导体内部电场强度一定为零。通过实验,人们发现,对超导态物质施加足够强的磁场,可以破坏其超导电性,使它由超导态变回正常态,恢复电阻。破坏超导态所需的最小磁场强度Hc叫做临界磁场。Hc是温度的函数,可近似表示为由上式可以看出,在临界温度Tc时,Hc=0。实验还发现,不加磁场,在超导体中通以足够大的电流也能破坏其超导电性。超导态所允许的最大电流Ic叫做临界电流。要维持超导态,必须将超导体置于三个临界值Tc、Hc和Ic之下,其中任何一个条件被破坏,超导电性随即丧失。三个临界值中,Tc、Hc只与材料的电子结构有关,是材料的本征参数;Hc和Ic彼此有关,且都是温度的函数。20世纪60年代超导材料实用研究取得了两项重大突破,其中之一是发现了像Nb3Sn这样的有高临界参数超导材料。这类超导体有两个临界磁场:下临界磁场Hc1和上临界磁场Hc2。当磁场小于Hc1时,超导体处于超导态;当磁场大于Hc2时,超导体恢复正常态;当磁场介于Hc1和Hc2之间时,超导体处于“混合态”,即一部分区域处于超导态,其余部分处于正常态。为了区别,称只有一个临界磁场的超导体为第一类超导体;称有两个临界磁场的超导体为第二类超导体。(1). 迈斯纳效应零电阻是超导态的特性之一,然而理想导体同样具有零电阻。由电磁学理论可以证明,理想导体内的磁场为常量,可能为零,也可能不为零,与初始条件或“历史”有关。这就是说,如果先降温至无电阻的理想导体状态,加上磁场后又去掉磁场,则内部无磁场;如果先加磁场在降温至理想导体后去掉磁场,则在体内会保持不变的不为零的磁场。1933年德国的迈斯纳等人通过实验否认了超导体是理想导体的说法,不管初始条件或“历史”如何,在超导状态下,超导体内部的磁感应强恒为零,这就是迈斯纳效应。超导体表面电流的磁场总能够完全抵消体内的外磁场,从而使体内磁场为零。迈斯纳效应表明超导体和理想导体有本质区别。所以零电阻效应和迈斯纳效应是超导体的两个独立的基本特性。2. BCS理论按照经典理论,金属电阻是晶格上离子热振动对定向运动的电子碰撞的结果。只有绝对零度时,在离子没有热振动的完整晶体中,电子才能在离子行间直线运动而不受碰撞,电阻才为零。按照量子力学对电阻的最初解释,电子具有波动性,只有在无热振动的完整晶体中,电子波可以不受任何散射地传播,才没有电阻。如果点阵排列有缺陷,或晶格离子热振动都将使电子波散射而传播受阻,便出现电阻。只有在绝对零度时,完整晶体的晶格热振动消失,电阻才为零。所以,无论是经典理论,还是量子力学的最初解释,都不能说明绝对零度以上的零电阻现象。自超导现象发现以来,物理学家们便致力于寻求其理论解释,先后提出了二流体模型、伦敦方程、金兹堡-郎道方程等唯象理论,表明人们对超导电性的认识逐步深入,但这些理论都没能指出产生超导电性的微观物理原因。1957年,美国物理学家巴丁(Bardeen)、库柏(Cooper)、施瑞弗(Schrieffer)建立了超导电性量子理论,即BCS超导微观理论。BCS理论的核心思想是超导体中电子形成了“库柏对”。金属中的电子并不是完全自由的,它会对周围晶格正离子产生吸引作用,邻近局部正电荷向电子微微靠拢而相对集中,又会吸引其它电子,其总效果是一个电子对另一个电子产生小的吸引力,如图9-2-8所示。这种吸引力极小,不会引起任何效果。但当温度低于Tc时,热骚动几乎消失。这种吸引力大得使两个电子结合成对,称为库柏对。库柏对是由两个动量完全相反的电子组成的。按照经典理论,这两个电子会沿相反地方向分离。按照量子理论,两个动量等大反向、自旋相反的电子结合成对时能量最低,因而最稳定。电子用波描述,两列波沿相反方向传播,却能较长时间交叠在一起,因而能连续相互作用。电子对中一个电子如果受晶格碰撞而改变动量时,另一个电子同样会受到晶格碰撞而发生相反动量的改变。结果是电子对总动量不变,所以晶格不会影响电子对的运动,宏观上表现为零电阻。大量库柏对的出现就是超导态的形成。图9-2-8 电子使正离子位移从而吸引其它电子BCS理论不仅能解释超导态的零电阻现象,而且能解释迈纳斯效应、超导体比热、临界磁场、临界温度、超导能隙等与低温超导相关的各种实验事实,并包含了此前的各种唯象理论,清楚地揭示了超导电性的微观本质。巴丁、库柏、施瑞弗为此荣获了1972年的诺贝尔物理奖。3. 约瑟夫森效应20世纪60年代超导研究的另一项突破性进展是在弱连接超导体中发现了约瑟夫森效应。所谓弱连接超导体是在两块超导体中间夹一层纳米厚度的绝缘膜,如图9-2-9所示。当一个小于Ic的电流从一个超导体流向另一个超导体时,库柏对会因量子隧道效应穿过中间的势垒,且仍保持配对状态,这样两侧的超导体之间没有电压,整个结构呈现零电阻性。将上述超导隧道结中的绝缘层换成金属层或真空同样能让超导电流通过,这就是超导隧道效应,也叫(直流)约瑟夫森效应。当约瑟夫森结两端加一个恒定电压U时,除隧道效应外,结区还会产生频率为f的高频电流,同时向外辐射频率为f的电磁波,这就是交流约瑟夫森效应。反过来,当一个频率为f的电磁波照射到约瑟夫森结上时,结上会产生电压U。约瑟夫森效应已成为微弱电磁信号探测和各种电子学应用的物理基础。图9-2-9 约瑟夫森结示意图4. 超导材料的应用超导体的零电阻效应、迈斯纳效应、约瑟夫森效应等特性向世人展示了诱人的应用前景。(1) 在强电方面的应用对于超导体在强电方面的应用,人们首先想到的是电力传输。在目前的电力传输中,为了减少线路的热损耗,不得不采用高压输电,这不仅安装不便,而且容易造成安全事故,也还是有大量的电能在传输过程中浪费了。利用超导体的零电阻效应便能做到无损耗输运,节约大量电能。强电应用的另一方面是超导磁体。当它处于超导态时,能承受巨大的电流,用它制作线圈不需铁芯,故超导磁体小而轻。超导磁体不仅能提供强大的磁场,获得高电流密度核能量密度,而且无功率损耗。这将是电能储存的理想设备。它可作为磁场源、脉冲大电流源(如激光武器电源),也可用来调节用电高峰与低谷,实现稳定供电。大功率发电机、电动机若能实现超导化将大幅降低能耗,获得很高的能量转换效率,并使其小型化。利用强大的超导电流的电磁斥力可设计出无摩擦的超导磁悬浮列车,列车速度可超过550km/h。超导体强大的电磁力可以为海轮和潜艇提供动力。医用超导核磁共振层析扫描技术利用超导磁体的强磁场穿透人体,借助计算机对人体不同部位进行核磁共振分析,用于医疗诊断。在磁约束的受控热核聚变反应堆中,只有超导磁体才有可能产生大体积、高强度的大型磁场(约105T)作为核聚变的加热和约束之用。又如在回旋加速器和同步加速器中使用超导磁体可以使粒子获得更大的速度。(2) 在弱电方面的应用超导在弱电方面的应用主要是指利用约瑟夫森效应做成各种器件。约瑟夫森器件用于集成电路具有开关速度快、功耗小、集成度高的特点,对超导计算机的研制有重要意义。根利用约瑟夫森结可以获得标准电压,且数值精确,使用方便,在电压计量方面意义重大。例如,美国国家计量局保存的电压标准,其心脏部件是4个铅膜-氧化铅膜-铅膜做成的约瑟夫森结,它把电压基准提高了二个数量级以上,是目前最准确的电压标准仪器。利用约瑟夫森效应制成的超导量子干涉器件可检测到弱于10-15T磁场,在地质勘测、海底勘测、地震预报、航天技术方面的应用前景诱人,在临床诊断中可以用于检测微弱的生物体磁信号。利用超导体由超导态转变为正常态时电阻从零变为有限值的特性,可将其制成各种快动开关元件。(3)高温超导材料已经发现常压下的超导元素多达20多种,其中以Nb、Pb、La、V和Sn等的临界温度Tc较高,最高的Nb的Tc也只有9.2k,难于实用。还有广泛使用的Nb-Zr、Ti-Nb、Nb-Re合金,最高的Nb-50Re的Tc为12.6k。金属间化合物Nb3Sn的Tc为18.3k,但质脆难加工。由于Tc低,使得超导体的应用受到很大的限制。1986年,超导研究取得了历史性突破,德国人J.G..Bednorz和瑞士人K.A.Müller发现La-Ba-Cu-O(镧钡铜氧化物)存在35K的超导转变。随后,中国、美国、日本等相继获得了Tc高于90K的新型超导材料。Bednorz和Müller因此获得了1987年的诺贝尔物理学奖。此前的传统超导体必须在液氦温度下工作。Tc超过77K的超导体可在液氮温度下工作,故称为高温超导体。目前发现的高温超导材料已多得难以统计,且随着研究的深入,材料的Tc值越来越高。铊钡钙铜系列氧化物的Tc已达125k,Hg系氧化物的Tc已达133.8k。今后得到干冰温度(240k)甚至室温超导体都有可能。高温超导体与传统低温超导体有相同的超导特性,而高Tc值使其具有比传统低温超导体更广阔的应用领域和更低的成本。例如,利用宇宙的低温,开发用于卫星通讯的钇系或铊系高温超导薄膜微波器件(工作温度在90~100K),将给空间微波技术带来巨大变化。核磁共振的探测器若用高温超导材料制备可极大地提高成像质量并降低成本。将来还有可能利用高温超导体的特有性质研制诸如半导体-超导体、铁电材料-超导膜混合的新型存贮器件。但是高温超导体都是氧化物陶瓷,没有足够的韧性和延展性,机械加工难度大,目前技术制备的线材在厘米级长度时超导性能还较好,但达到1m长时其Ic已不高了。所以高温超导应用的主要障碍不是Tc低,而是材料制备工艺。超导材料将以其独特魅力继续吸引人们的关注,高温超导技术被认为是21世纪十大高新技术之一。目前的高温超导机制还不完全清楚,需要做大量的工作,高温超导理论的突破必将对凝聚态物理学的发展产生深远影响。七、介观材料1、介观材料及其结构单元美国著名物理学家、诺贝尔奖得主R.P.Feynman在1959年预言:如果我们对物体微小规模上的排列做某种控制,就能使物体得到大量异乎寻常的特性,看到材料的性能产生丰富的变化。他所说的就是介观材料。介观体系是80年代中期明确提出的新概念,其研究对象是介于宏观凝聚态与微观原子、分子之间的体系。介观材料通常包括尺度在纳米级至亚微米级之间的超微颗粒或团簇、一维线(直径为纳米级)、二维薄膜(厚度为纳米级)以及由这些单元组成的无序或有序固体材料。这类体系由于其独特的性质及广泛应用,构成了人们认识世界的一个新的层次,也为新型材料的开发提供了一个重要途径。介观体系的结构单元包括团簇、纳米颗粒、纳米线(管、棒)、纳米薄膜。团簇指几个到几百个原子的聚集体,粒径≤1nm,如Fn、CunSn、CnHm、Cn等。碳簇(Cn)又称为富勒烯。富勒烯家族包括C30~C100,碳原子数目为偶数,其中C60研究得最多。C60结构类似于一个足球(图9-2-10 ),由12个五边形和20个六边形组成,也称巴基球,是富勒烯中最稳定的成员。纳米颗粒指几何尺寸为纳米量级的微粒,一般在1~100nm范围,含原子数约102~104个,其中50%为界面原子。按照化学组成,可分为纳米金属颗粒、纳米金属化合物颗粒、纳米陶瓷颗粒等。纳米颗粒也可分为晶态、准晶和非晶颗粒。团簇和纳米颗粒称为零维材料。 准一维实心纳米材料是指在两维方向为纳米尺度,长度比上述两维方向尺度大得多的材料。长度与直径的比率小的实心准一维纳米材料称为纳米棒,长度与直径比率大的称为纳米丝或纳米线。半导体和金属纳米丝常称为量子线。1991年,日本科学家发现一种新的碳结构,它不同于C60球状结构,而是一种针状碳管,直径1~3nm,长达1μm,管壁由碳六边形组成,两端由碳五边形封顶。一般由多层直径不同的单壁管组成,数目在2~50层之间。这种空心的准一维纳米材料称为纳米管。碳纳米管具有惊人的强度,能经受近百万个大气压强;其载流子为p型,可以看作极细的导线,可制成超精细电子电路;还是一种很好的储氢材料。纳米薄膜是指厚度为纳米级的薄膜,如超薄膜、多层膜、超晶格。上述介观单元往往具有量子性质,故对零维、一维、二维基本单元又分别有量子点、量子线、量子阱之称。图9-2-10 C60分子结构2、介观材料的奇异特性介观体系的力学、热学、光学、电磁学及化学等方面的性质与常规材料大相径庭,这些奇异特性主要是由以下原因引起的。(1)小尺寸效应 当超微颗粒尺寸不断减小,与光波波长、传导电子德布罗意波长等特征尺寸相当或更小时,晶体周期性边界条件将被破坏,导致力、热、声、光、电、磁等特性出现异常,称为小尺寸效应。如金属团簇、纳米颗粒光反射能力降低、吸收能力增强,呈黑色,光吸收峰位置向短波方向移动(蓝移)等;陶瓷通常很脆,但纳米陶瓷却有良好的韧性;熔点随尺寸减小而降低,40nm的铜粒子的熔点由10530C降到750oC,Ag纳米粒子的熔点可由690oC降到100oC。20nm Fe纳米磁性颗粒的矫顽力是大块材料的1000倍,但尺寸再减小到6nm时,矫顽力又趋于0,表现为超顺磁性。(2)表面效应与界面效应 团簇、纳米微粒尺寸小,表面积大,表面能高,表面原子数比例很大。表面原子的化学环境与体相完全不同,存在大量悬空键,具有很高的表面能,因而表现出很高的化学活性,极易与其它原子结合而稳定下来,这就是表面效应。如金属纳米粒子极易氧化甚至自燃,无机纳米粒子在空气中易吸附气体并与气体反应,对光、气氛、温度、湿度十分敏感。团簇、纳米粒子具有异常高的催化性能。表面效应还使材料界面的杂质浓度大为降低,从而大幅度提高材料的力学性能。对于相同组分的材料,当晶粒尺寸减小到纳米级时,位错的滑动受到限制,所以纳米材料的强度明显高于常规材料。此外,纳米材料界面浓度很高、界面原子排列混乱,在受到外力作用产生变形时,原子很容易迁移、扩散,从而表现出极佳的塑性、韧性、延展性,这就是界面效应。(3)量子尺寸效应 量子力学说明了原子的能级结构,有无数原子构成固体时,因原子间的相互作用使得原子的电子能级变为能带。对于介观体系,大块材料中准连续的能带随着体系尺寸的减小又会逐渐变窄,逐渐还原为分立能级,且能级之间的间距随体系尺寸的减小而增大。当分立能级间距大于热能kT、光子能量hν以及电场能或磁能时,就会产生异于宏观物体的反常效应,称之为量子尺寸效应。如比热与温度呈非线性关系,纳米金属颗粒呈现出电绝缘性和半导体性,纳米粒子对红外吸收共振峰比普通材料尖锐得多等等。实际上,上述小尺寸效应、量子尺寸效应、表面效应是相互联系、不可分割的。此外纳米材料还有介电限域效应、库仑阻塞效应、宏观量子隧道效应等诸多异于宏观物体的性质,此处不一一介绍。3、介观材料的应用介观体系是20世纪末发展起来的崭新领域。介观材料是当今一个极为活跃的研究前沿,是21世纪的关键技术之一。由于介观材料(团簇,纳米颗粒,一维、二维纳米体系)表现出许多异于宏观物体的性能,因而具有十分广泛的潜在应用价值。介观材料目前正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。下面略举几例说明。传统陶瓷材料韧性差,因而使其应用受到很大限制。若能掌握陶瓷在烧结过程中抑制晶粒长大的技术,从而将陶瓷晶粒尺寸控制在纳米量级,则由于表面和界面效应,这样的纳米陶瓷将具有高硬度、高韧性、低温超塑性、易加工等传统陶瓷无与伦比的优点。纳米电子学是
物理知识系列讲座(三)——物理学与高新技术1——物理学与航空航天技术序言20世纪以来,物理学的基本概念、基本理论、基本实验手段和研究方法全方位渗透到技术领域,导致了一系列高新技术的产生。高新技术是指基本原理建立在最新科学成就基础上的技术,是位于科学技术最前沿的综合性技术群。在讲座中已经讲过,物理学理论的每一次突破都促成了技术领域的革命性变化和发展。牛顿力学和热力学的建立直接促成了以蒸汽动力技术和机械技术为代表的第一次技术革命;电磁学理论的建立导致了以电气技术、无线电通信技术等应用为标志的第二次技术革命;相对论和量子力学的建立以及在此基础上形成的各物理学分支导致了以能源技术、材料技术、信息技术、空间技术、生物技术、海洋技术等高新技术群为代表的第三次技术革命,这次技术革命较前两次技术革命给人类带来的影响更加深远,它正全方位地迅速改变着整个社会的面貌。材料、能源和信息技术被并称为现代文明的三大支柱,航空航天技术体现了一个国家的整体科技实力和综合国力。以下将简要介绍物理学原理在这些高新技术领域的应用。飞向天空是人类亘古以来的梦想。世界上几乎每个民族都流传着各种飞天的神话和传说。经过数千年的探索和不懈追求,人类终于实现了飞天的梦想。航空与航天技术是人类智慧和文明高度发展的结果。航空是指人类在地球大气层内进行的飞行及有关活动,航天是指人类冲出大气层,在几乎没有大气的宇宙空间的航行活动。随着人类飞行范围的不断扩大,近年又产生了“航宇”的概念。航宇是指人造天体冲出太阳系的航行活动,所用飞行器称“航宇器”。除太阳以外,其他恒星距地球太遥远,以每秒十几公里的速度飞行,即使到达最近的恒星(“半人马座α星”)也要上万年时间,当前的科技水平还不能满足航宇的需要。目前,除美国发射了“先驱 者”10号、11号和“旅行者”1号、2号航宇探测器外,其余国家的航宇器还处于研制和构想阶段。即便是飞得最远的人造航天器——1977年9月5日发射的“旅行者”1号飞船,也还要几年的时间才能飞出太阳系。此处,对“航宇”不做进一步介绍。航空技术主要研制气球、飞艇、滑翔机、直升机、军用及民用飞机等飞行器即航空器。航天技术主要研制运载火箭、人造卫星、导弹武器、无人及载人飞船、航天站、航天飞机和空间探测器等人造天体即航天器。所有飞行器都必须获得大于自身重力的升力,才能飞上天空,根据获得升力的途径,飞行器大致分为三类:一是基于阿基米德 浮力定律的飞行器,即轻于空气的飞行器,包括热气球、氢气球、氦气球及飞艇等;二是基于动量守恒定律的飞行器,包括火箭、垂直起落的飞机(直升飞机)等;三是基于流体动力学原理的飞行器,即以速度换取升力的飞行器,包括滑翔机、直升机、飞机等。一、航空器的飞行原理b1.热气球、氢气球、氦气球热气球由气囊、吊篮和燃烧器等部分组成,氢气球、氦气球没有燃烧器。热空气、氢气和氦气的密度小于大气密度。根据阿基米德定律,将它们充入气囊就可以获得相应的浮力。当浮力大于重力时,气球升空;关闭燃烧器,停止加热,或放掉部分氢气、氦气,使重力大于浮力,则气球降落。1783年9月19日,法国人蒙格尔菲兄弟研制成世界上第一个热气球。1783年10月15日,法国的F.P.罗齐埃和M.达尔朗德乘坐热气球升空,这是在风力作用下的被动飞行,但因为这是人类首次乘坐航空器在空中航行而载入航空史册。由于现代航空技术的发展和现代航空工具应用,各类气球不再扮演交通运输工具的角色,但仍然广泛应用于运动、娱乐、探险及各类商业活动。2.飞艇飞艇是利用充填到气囊中的氢气、氦气、热空气等气体获得升空浮力,利用装在舱后的发动机和螺旋桨产生前行动力的可操纵的轻于空气的载人飞行器,通常由飞艇囊体、货舱、动力装置和操纵舱4部分组成。1852年9月24日,法国人H.吉法尔制成的飞艇是世界上第一个具有主动、持续飞行必备条件的轻于空气的飞行器。经过几十年的发展,到二十世纪二、三十年代,飞艇成为当时最方便、最快捷、最舒适的交通工具而盛极一时。最初的飞艇就是一个流线型气囊,像气球一样,体积不很大,载重只有几吨。后来的飞艇改用金属、木材等制成框架,在外面蒙上织物,舱内置若干个气囊,这样就可以造得很大,载重可达几十吨,航程达几千公里,速度比轮船快几倍,能进行跨洋长途运输等。1937年,当时最先进、最豪华的巨型飞艇“兴登堡”号在美国着火烧毁。充氢气飞艇连续发生了这样的起火事故后,飞艇交通就此一蹶不振,加上飞机技术的快速发展和广泛应用,飞艇便淡出了人们的视野。随着航空技术、材料技术的发展以及20世纪60年代开始的世界性石油危机的出现,人们又想起了节省油料、效费比高的飞艇,并纷纷利用新科技研制新型飞艇,使其性能有了质的变化。这种汽艇由不会燃烧和爆炸的氦气或氦气与氢气的混合气体提供升空浮力;采用轻质高强度钛铝合金和压层复合材料制造,使其自重减轻,阻力减小,载重量、续航能力和航程成倍增加;采用倾斜旋翼推进及稳定性增强系统,使航速大为提高;将传统飞艇和飞机(速度快)、直升机(垂直起降)的优点结合起来,建造组合式飞艇,可提供数十倍甚至百倍于常规飞艇的有效载荷能力,航速达200~300km/h,航程上万公里。随着性能的提高,现代飞艇已广泛应用于交通运输、高压线路架设、森林防火监测、大型设备(如石油勘探设备、大型水力发电机组、巨型火箭、反应堆等)整体调运、巡逻救护、空投空降等领域。3.滑翔机、滑翔伞气球和飞艇的发明初步实现了人类征服天空的理想。为实现“像鸟类那样自由飞翔”的愿望,人们模仿鸟类的外形和飞行动作制造“羽人”和扑翼机,但是近2000年的实践说明“羽人”飞行和扑翼机的扑翼飞行实现不了“自由飞翔”。受风筝和鸟类滑翔的启迪,人们开始尝试用固定翼机构实现飞行。英国的乔治·凯莱爵士(1778-1857)、滑翔鼻祖德国的奥托·李林达尔(1848-1896)、美国航空家夏尼特(1832-1910)、飞机发明者——美国人莱特兄弟(威伯尔·莱特 1867-1912,奥维尔·莱特 1871-1948)等人先后制造了滑翔机,进行了滑翔试验,为航空科学做出了巨大贡献。(1). 滑翔机滑翔机是能持续飞行的重于空气的航空器,主要由机翼、机身、尾翼、起落装置和操纵系统五大部分组成,一般没有动力装置,升力是靠拱形剖面的机翼产生的。当滑翔机在空气中飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是空气流过机翼,而机翼不动。如图9-1-1所示,固定机翼是不对称的,上表面是凸的,而下表面比较平,由流体力学原理可以证明,表面空气流速快,压强低,下表面空气流速慢,压强高,上下表面的压强差便产生向上的升力,当升力大于重力时便可升空飞行。飞行速度愈快,产生的升力愈大。无动力滑翔机在外力牵引下达到一定的高度和初速度,然后脱离牵引,靠自身重力获得速度,产生升力,做自由飞行。有动力滑翔机依靠自身动力起飞,到达预定高度或预定区域后关闭发动机进行自由飞行。随着空气动力学研究的进展和材料技术的进步,滑翔机的结构日趋轻巧,性能不断改进,加上滑翔术的提高,飞行直线距离已逾千公里。滑翔机的研制为飞机的发明提供了极为宝贵的经验和理论基础。飞机问世后,滑翔机又被赋予了新的使命:用于航空体育活动即滑翔运动、军事勤务、飞机驾驶员的前期训练以及用作空中科研试验的运载工具。图9-1-1 机翼剖面图(2). 滑翔伞滑翔伞是一种全柔性冲压式翼型伞,是降落伞与滑翔翼的结合, 主要由伞衣、伞绳、组带、座袋等部分组成,一般没有动力装置,靠伞衣产生升力。如图9-1-2所示,伞衣由弯长的上翼面和短直的下翼面以及数十个左右肋片隔成一个个气室。伞衣前缘有一定尺寸的进气口(风口),后缘完全封闭,当飞行员在山坡上迎着上升气流跑动或在空中飞行时,空气灌入风口,产生冲压力作用,使伞衣内腔均匀充气并保持一定的刚性,这就形成了类似滑翔机机翼的拱形剖面。空气流经伞衣时,就会产生升力。在滑翔伞的座袋后加一个动力推进器构成动力滑翔伞,这样就可以在平地起飞。作为一项集休闲、冒险和挑战自我于一身的体育运动,滑翔伞飞行正受到越来越多的航空运动爱好者的喜爱。图9-1-2 伞衣的解剖图4.飞机、直升机、旋翼机、垂直起落飞机(1). 飞机莱特兄弟在他们的第三架滑翔机完全达到可以稳定操纵的要求后,给它安装了一台自制的功率为12马力、重量为47公斤的活塞式汽油发动机,并配上螺旋桨,将其命名为“飞行者1号”。1903年12月17日是一个载入史册的日子,“飞行者1号”成功地完成了人类历史上首次持续且有动力、可操纵、重于空气的载人飞行器的升空飞行,飞行距离260m,留空时间59s,飞机就此诞生了。100年来,飞机的气动外形、动力推进系统、结构材料和控制系统、飞行速度、升空高度、续航能力、机动性等都发生了根本的变化。但是,基本的物理原理未曾改变,即始终要靠机翼产生大于其自身重力的升力,要靠发动机获得大于阻力的推力或拉力,飞机才能升空飞行,如图9-1-3所示。图9-1-3 飞机飞行原理图机翼一般具有图9-1-1所示拱形剖面。飞机起飞、飞行和降落时,机翼相对空气运动,根据流体力学原理,上下翼面的压力差便形成了飞机的升力。根据产生推进动力的原理,飞机的发动机可分为直接反作用力发动机、间接反作用力发动机两类。直接反作用力发动机又叫喷气式发动机(如涡轮喷气发动机、冲压喷气式发动机等),是利用向后喷射高速气流,产生向前的反作用力来推进飞机的。间接反作用力发动机(如活塞式发动机、涡轮螺旋桨发动机等)是由发动机带动具有拱形剖面的螺旋桨旋转将空气向后推动,借其反作用力推动飞机前进的。涡轮风扇发动机既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。飞机是由动力装置产生前进推力、由固定机翼产生升力、在大气层中飞行的重于空气的飞行器,主要由机翼、机身、动力装置、飞行控制系统、起落装置、机载设备等部分组成,是用途最广、数量最多、对人类社会活动影响最大的航空器。人们对飞行速度、飞行高度、航程、稳定性、操纵性、机动性以及用途特别是军事用途的追求,使飞机的外形、结构、大小千变万化,新型号层出不穷。(2). 直升机直升机是以动力驱动旋翼旋转产生升力,可以垂直起落的在大气层中飞行的重于空气的航空器,主要有旋翼、机身、发动机、起落装置、控制系统和机载设备等部分组成(图9-1-4)。旋翼产生升力的原理与公元前3世纪中国出现的竹蜻蜓是一致的,但直到1907年才有第一架直升机试飞,到1936年才制成第一架实用型直升机。直升机的发明为何会经历如此漫长而曲折的过程,又为何会晚于飞机,为何直升机在发明30年后才出现实用机型?这是因为3个关键性技术难题的存在:(1).要产生能提升起直升机重量的升力需要高功质比(功率/质量)的发动机和合理的旋翼翼型;(2).要使直升机从起飞到降落的全过程相对旋翼轴角动量守恒;(3)要能实现对直升机从起飞到降落的全过程的控制。图9-1-4 直升机在上述技术难题解决后,直升机进入了高速发展时期,20世纪30年代末便达到了实用程度,开始规模生产。20世纪50年代以前的直升机全部以活塞式发动机为动力,旋翼桨叶为金属/木质混合式,机体为由钢管焊接成的桁架式或铝合金半硬壳式结构,装有简易的仪表和电子设备,操纵困难,调节系统复杂,最大平飞速度约200km/h,全机振动大和噪声高。20世纪下半叶,随着空气动力学、结构动力学、材料技术、电子技术等的发展,直升机的性能得以全面提升,用途日趋广泛。现代直升机以第三代涡轴发动机为动力,装有经过优化设计的翼型、桨尖和用先进的复合材料乃至智能材料制作的旋翼桨叶,采用无轴承或弹性铰式等新型桨毂,机体结构大部分或全部使用复合材料,机载电子设备采用数据总线、综合显示和任务管理,配备先进的飞行控制、导航设备等系统,采用电传操纵,最大平飞速度约315km/h,振动和噪声已得到良好的控制。当前的武装直升机集中体现了上述现代技术特点。要说明的是,直升机不是飞机,它与飞机有显著区别。直升机没有机翼,靠发动机驱动旋翼旋转产生升力,转速大于某一值后,升力大于重力便可起飞,所以直升机能垂直起降无需跑道和机场,且可在空中悬停、定点转弯;而飞机则靠发动机的拉力或推力向前运动,使固定机翼与空气相对运动产生升力,飞机的前进速度大于某一临界值后,升力大于重力,飞机起飞进入空中飞行,因为临界速度的存在,所以飞机起飞和降落需要很长的跑道,且在空中必须大于临界速度飞行,不能有片刻停留。飞机靠方向舵实现转向,靠升降舵实现升降;而直升机则靠改变旋翼轴的倾斜角度实现转向,靠调节旋翼的转速实现升降。由此看来, 直升机和飞机是两种不同类型的航空器,不能混为一谈。(3). 旋翼机如图9-1-5所示,旋翼机和直升机极为相似:它们头顶都有一副大直径的旋翼,在飞行中都依靠旋翼的旋转产生升力。但是除去这些表面上的一致性,旋翼机和直升机却是两种完全不同的航空器。图9-1-5 旋翼机旋翼机实际上是一种介于直升机和飞机之间的飞行器,它除了旋翼外,还带有一副螺旋桨以提供前进的动力,一般也装有较小的固定机翼在飞行中提供部分升力。旋翼机与直升机的最大区别是:旋翼机的旋翼不与发动机传动系统相连,因而不以发动机驱动旋翼来提供升力,升力是在旋翼机前进过程中,由前方气流吹动旋翼旋转产生的,所以它需要滑跑起飞、不能悬停;而直升机的旋翼与发动机传动系统相连,既能产生升力,又能提供飞行的动力。旋翼机的旋翼为自转式,传递到机身上的扭矩可以忽略,因此旋翼机无需单旋翼直升机那样的尾桨,但是一般装有尾翼,以控制飞行。 在飞行中,旋翼机同直升机最明显的区别为直升机的旋翼面向前倾斜,而旋翼机的旋翼则是向后倾斜的。旋翼机旋翼旋转的动力是因前进而获得的,若发动机在空中“停车”,由于惯性,旋翼机会继续前飞,并逐渐减低速度和高度,而高度下降的同时,也就 有了自下而上的相对气流,旋翼就能自转提供升力。这样,旋冀机便可凭飞行员的操纵安全降落。此外, 旋翼机还具有稳定性好、抗风性强、维护简便、性价比高、结构小巧等优点,因而广泛应用于工业、农业、林业、旅游观光、文化体育、行政公务、海岸巡逻及环境监测等方面,美国陆军正在研制低空飞行的无人战斗旋翼机,它的应用领域看来还会进一步扩大。(4). 垂直起落飞机直升机能够悬停和垂直起降,无需跑道和机场,但飞行速度慢,有效载重小,稳定性和操纵性不好。飞机飞行速度快、载荷大、稳定性和操纵性也好,却不能悬停,需要专用机场和跑道。若将它们结合起来,发挥各自的优势,便能很好地满足军事和民用的要求,这也是直升机和飞机的发展趋势。这种集直升机和飞机功能于一身的航空器既能垂直起落、空中悬停,又有固定机翼能像飞机一样远距离高空快速飞行,所以称之为垂直起落飞机或直升飞机。已经问世和正在研制的直升飞机大致有以下几种形式:(1).倾转旋翼式:机身机翼与普通飞机一样,涡喷螺旋桨发动机置于固定翼两端,起落时发动机垂直向上,螺旋桨用作旋翼产生升力,在空中作直升机模式和飞机模式的相互转换飞行时,旋翼(即螺旋桨)随发动机旋转90°;(2)倾转机翼-旋翼式:可以垂直或超短距起降,飞机作直升机模式和飞机模式的相互转换飞行时,机翼与旋翼一起旋转;(3)复合式:在直升机布局上再加一个固定机翼和专门用于平飞的发动机,飞行速度达到一定值后,旋翼停转并被锁住,成为与机身成90°的一副固定机翼,飞行器以飞机模式飞行。二、火箭推进原理 宇宙速度1.火箭推进原理1903年,俄国科学家齐奥尔科夫斯基提出,可利用火箭向后喷气产生的反作用力运动飞向宇宙,建立了著名的齐奥尔科夫斯基公式,为现代航天技术奠定了理论基础。他本人也因此被誉为“航天之父”。火箭是航天运载工具(用于发射人造地球卫星和航天飞机等),携带有燃烧剂和氧化剂,可以在空气稀薄的高空或外层空间飞行,且由于空气阻力减小,有效推力会更大。根据动量守恒定律,燃料燃烧向后喷出高速气体,火箭就会获得巨大的前进速度。为简单起见,考虑火箭在自由空间的飞行,这样就可以不计空气阻力和引力。火箭是变质量系统,自身质量和喷出气体的速度时刻在变,故不能从过程的始末状态来考虑,只能通过元过程来分析。设t时刻火箭(包括火箭体和尚存的燃料等)质量为m,速度为ν。经过时间,火箭喷出的气体质量为(火箭质量是减小的,故为负值),火箭体的速度增大到,质量变为,如图9-1-6。图9-1-6 火箭推进原理若喷出气体相对火箭的速度恒为,根据动量守恒定律,有上式展开,并略去,即得(9-1-1)设火箭点火时的质量为,速度为,燃料烧完后的质量为,速度为,则(9-1-1)式积分可得即 (9-1-2)这就是著名的齐奥尔科夫斯基公式,该式给出了提高火箭速度的方法:(1)加大喷气速度;(2)增大火箭始末质量比。以目前一般火箭能达到的2500m/s左右的喷气速度来说,要使火箭速度达到7.9km/s,则由(9-1-2)式计算所需的质量比为24,即1吨重的火箭必须携带23吨燃料。这在当前技术条件下是实现不了的。若考虑地球引力、空气阻力和各种技术原因,则即使用喷射速度在以上的液氢加液氧做推进剂,单级火箭也不能把航天器送上天。为了使火箭获得高速度,现在采用多级火箭,一级的燃料用完时,壳体自行脱落,随之点燃下一级。这样,火箭最后就能获得很大的速度。以三级火箭为例,第一级的初速度为零,设第一级脱落时速度为,第二级脱落时速度为,最后速度为,三级的质量比分别为,喷出的气体相对火箭体的速度为,则有三式相加,则 (9-1-3)因为质量比大于1,故火箭的级数越多,最后获得的速度就越大。对下面一级火箭来说,前面各级都是它的有效载荷。理论计算和实践经验表明,每增加1份有效载荷,火箭就需要增加10份以上的质量来承受它。随着火箭级数的增加,最下面一级和随后几级会变得越来越宠大,以致于无法起飞,所以级数不可能无限制地增加,多级火箭一般不超过4级。实际上,由于空气阻力和地球引力的影响,火箭最后达到的速度比理论计算值要低。运载火箭通常为多级火箭,多级火箭是由多个单级火箭组成的飞行整体,其组合方式有3种:串联、并联和混合式,常用的形式是串联和串并联。串联就是将多个火箭通过级间连接/分离机构连成一串,第一子级(多级火箭中上面级火箭就是下面级火箭的有效载荷,不含有效载荷的火箭称为子级火箭)在最底下,先点火,燃料耗尽后通过连接/分离机构被抛弃掉。接着,其上面级火箭依次点火并被依次抛弃,直至有效载荷进入飞行轨道。并联就是将多个火箭并排地连接在一起,周围的子级火箭先点火,燃料耗尽后被依次抛弃,中央的芯级火箭最后点火,以这种方式连接的多级火箭又称为捆绑式火箭。如果芯级火箭本身是串联式多级火箭,这就是串并联式火箭。如我国用于发射载人飞船的长征二号F火箭就是串并联式火箭,由四个液体助推器、芯一级火箭、芯二级火箭、整流罩和逃逸塔组成,全长58.3米,起飞质量479.8吨,运载能力为7.8吨,可以把飞船送入200~400公里的近地轨道。2.宇宙速度(1)第一宇宙速度在地面上发射航天器,使其绕地球做圆周运动所需的最小发射速度称为第一宇宙速度,即发射人造卫星所需的最小速度。当质量为的人造卫星在距地心为的圆轨道上以速度运行时,向心力就是地球对它的引力,即,其中为万有引力常数,为地球质量,由此式可得(9-1-4)故卫星此时的动能,卫星和地球系统的势能。卫星发射时离地面的高度远小于地球半径,所以它和地球系统的势能为。设发射速度为,则初始动能。卫星发射后,它和地球系统的机械能守恒,故有(9-1-5)整理上式可得(9-1-6)(9-1-6)式说明,卫星升得越高,即越大,所需发射速度也越大。与最小发射速度对应的是地球表面附近(大气层外)的轨道,其半径近似于地球半径,故由(9-1-4)式计算的第一宇宙速度为(9-1-7)根据(9-1-6)式,若发射速度大于7.9km/s,小于11.2km/s,则卫星将继续上升(远离地球运动),增大,而该过程机械能守恒,故其飞行速度会减小,直到万有引力等于向心力,所以第一宇宙速度是人造卫星在地面附近绕地球做圆周运动所必须具有的最低发射速度,也是其在地球表面附近做匀速圆周运动所具有的最大运行速度。(2).第二宇宙速度在地面上发射航天器,使之能脱离地球引力场所需的最小发射速度,称为第二宇宙速度。第二宇宙速度对应于航天器逃离地球引力场后速度为零,其与地球系统的引力势能也为零的情况。航天器脱离地球引力场的过程机械能守恒,设相应的发射速度为,则由(9-1-5)式可得,根据此式算得第二宇宙速度为(9-1-8)若要航天器登上月球,或飞向其它行星,或使其成为太阳的行星,则航天器在脱离地球引力场后还必须有一定的速度,故其发射速度必须大于第二宇宙速度。(3)。第三宇宙速度在地球表面发射航天器,使之不但脱离地球引力场,还要脱离太阳引力场所需的最小发射速度,称为第三宇宙速度。经过分析计算可得到第三宇宙速度为V3=16.7km/s。速度大于的飞行器能够先摆脱地球引力场,再摆脱太阳引力场,进入茫茫宇宙做恒星际航行,这样的飞行器称为航宇器,所以第三宇宙速度就是发射航宇器的最小速度。三、航天器的发射与返回1957年10月4日,前苏联成功发射了世界上第一颗人造地球卫星——人造卫星1号,人类活动开始进入太空。近50年来,航天技术在应用卫星、深空探测及载人航天三大领域快速发展,世界各国先后发射了5000多个航天器。航天器分为无人和载人两大类。无人航天器包括人造地球卫星、空间探测器、无人飞船、航天运载火箭。载人航天器包括载人飞船、航天飞机、空间站。空间探测器分为月球探测器、行星和行星际探测器。载人飞船分为卫星式载人飞船和登月载人飞船。空间站分为轨道站、航天站、太空站。人造地球卫星分为科学实验卫星和应用卫星。科学实验卫星用于对大气层外太空进行科学观测或在大气层外进行各种科学实验,如天文观测(获得地外天体信息,哈勃太空望远镜就是一种重要的天文观测工具)、探测宇宙射线、太空生物实验、太空育种研究等。应用卫星包括通讯卫星(远程无线微波通讯中继站)、军事侦察卫星、气象卫星(定点于赤道上空的地球同步气象卫星和轨道平面方向相对太阳不动的太阳同步气象卫星)、地球资源卫星(地面探测及资源勘探)等。尽管航天器种类繁多,但它们在发射、返回及运行时所遵从的物理原理基本相同。1.航天器的发射人造地球卫星、空间探测器、宇宙飞船、空间站等航天器装在运载火箭的末级上,由运载火箭点火发射后送入其运行轨道。运载火箭通常为三级火箭,其发射后的飞行过程大致可分为如图9-1-7所示的三个阶段。图9-1-7 卫星发射三个阶段垂直起飞阶段 地球表面附近大气稠密,火箭飞行受到很大阻力。为尽快冲出大气层,通常采用垂直向上发射,这样也容易保证飞行的稳定。发射后经短短几分钟的加速,火箭已达相当大的速度,至第一级脱落时,火箭已处于大气层之外了。此后,第二级点火继续加速直至脱落。转弯飞行阶段 第二级脱落后,火箭已具有足够大的速度。这时第三级并不立即点火发动,而是靠已获得的巨大速度作惯性飞行继续升高。并在地面控制站的操纵下,使火箭逐渐转弯,偏离原来的竖直方向,直至变为与地面平行的水平方向。进入轨道阶段。当火箭到达与航天器预定轨道相切的位置时,第三级点火开始加速,使其达到航天器在轨道上运行所需的速度而进入轨道。进入轨道后,火箭完成运载任务,航天器随即与之脱离而单独运行。刚脱离时,航天器与末级火箭具有相同的速度,并沿同一轨道运动。轨道处仍有稀薄气体,而航天器与火箭的气动外形不同,故两者所受的阻力不同,因而两者的距离会逐渐拉开。发射地球同步轨道卫星的技术难度比发射一般卫星大得多。地球同步卫星的轨道平面与地球赤道平面重合,运行周期与地球自转周期严格相等,即。这样,地球与卫星一起每天转一圈,同时在地球公转轨道上转过360°/365,所以在地面上看,地球同步卫星好像是固定在赤道正上方的某点。由圆周运动规律可以计算其高度和运行速度:(9-12)代入数值,解方程可得:,。可见,所有地球同步卫星离地的高度和运行速度都相等。如果发射场建在地球赤道上,那我们只要在赤道上由西向东发射这种卫星,使其达到要求的轨道高度,在适当的位置定点,问题就解决了。可惜的是,许多国家不可能在赤道上建立卫星发射场,使地球同步卫星的发射要经过几次轨道变换才能进入地球同步轨道。地球同步卫星的发射过程大致如下:先依次启动运载火箭的第一级和第二级,使火箭加速飞行。第二级脱落后,火箭携带卫星按惯性转弯进入一个距离地球很近的轨道,称为初始轨道或停泊轨道。当卫星到达初始轨道的远地点时,末级火箭点火工作,把卫星加速到一个大椭圆轨道 (转移轨道)上,该椭圆轨道的近地点就是初始轨道的远地点,其远地点与同步轨道相切,高度等于35786km。进入转移轨道后,卫星与末级火箭分离以惯性飞行,并启动两侧的切向喷嘴,使其开始自旋。在绕行过程中,地面控制站对卫星姿态进行调整,当其到达转移轨道的远地点时,卫星上的远地点发动机点火工作,改变航向,使它进入地球赤道平面,同时加速卫星使其达到在同步轨道上运行所需的速度,再进一步调整姿态,将其准确送入赤道上空的同步轨道。2.航天器的返回人造地球卫星航天器的返回与发射是一对逆过程。发射过程是航天器从地面经加速穿过大气层而进入其运行轨道的过程;而返回过程则是航天器从运行轨道经减速到达地面的过程。 航天器的返回大致可分为调姿、制动、过渡、再入及着陆五个阶段。调姿阶段是指航天器在原运行轨道上调整姿态,形成制动状态。为使航天器能够返回地面,必须改变其速度的大小和方向,使其脱离原来轨道而进入一条与地球稠密大气层相交的过渡轨道。制动阶段是指制动发动机点火工作,航天器进入过渡轨道。当航天器到达离轨点时,制动发动机点火工作,发动机火力大小和方向必须精确控制,否则航天器可能进不了大气层,或者进入后因大气过于稠密而产生大量热量使航天器烧毁。过渡阶段是指航天器在过渡轨道上基本作无动力惯性飞行,这是进入大气层前的阶段,在这一阶段航天器一般要经过多次轨道修正以便准确地进入再入走廊(航天器进入大气层时的允许轨道范围)。 再入阶段是指从进入大气层到距地面10-20公里高度的一段轨道。航天器要经受高温和较大过载的考验。航天器的再入轨道在再入走廊范围内时,就能在地球表面降落并保证过载和气动加热不会超过安全值。当航天器不在再入走廊内返回时,返回过程将失败。 着陆阶段是指当返回器降落到10-20公里高度时具有亚音速级的速度,即200米/秒左右,此时应采取进一步的减速措施以使返回器安全地在地面着陆。除航天飞机外绝大多数返回器采用垂直方式着陆,这种方式采用的是降落伞系统,我国的“神舟”系列飞船采用的就是这种方式。3.航天飞机航天飞机是可以重复使用的、往返于地球表面和近地轨道之间运送人员和货物的飞行器。用运载火箭发射航天器,每次都要消耗一枚巨大的火箭,使得航天活动耗资巨大。为解决这一问题,美国在“阿波罗”登月计划后,就着手研制一种经济的、可以重复使用的航天器——航天飞机。1981年4月12日,世界上第一架航天飞机——“哥伦比亚”号在美国肯尼迪航天中心发射升空。随后10年,美国又制造了4架航天飞机:“挑战者”号、“发现”号、“阿特兰蒂斯”号和“奋进”号。航天飞机主要由轨道器、助推火箭和推进剂外贮箱三个主要部分组成。发射时,轨道器的3个主发动机先点火,然后2个助推火箭点火,航天飞机垂直起飞,按预定的飞行程序上升。飞行高度达到45km左右时,助推火箭脱落并靠降落伞悬吊落在海面上,由回收船回收,供下次再用。3台主发动机继续推进轨道器和外贮箱的结合体,当高度约为109km、速度约为7470m/s时,主发动机关机,外贮箱与轨道器分离并在坠入大气层时烧毁。随后,轨道机动系统发动机点火,用小推力把轨道器精确地送入高度在185~1100千米之间的预定近地轨道。轨道器可以完成人造地球卫星、货运飞船、载人飞船甚至小型太空站的许多功能,还可以完成一般航天器所没有的功能,如向近地轨道施放卫星,向高轨道发射卫星,从轨道上捕捉、维修和回收卫星等。返回时轨道机动系统发动机点火,使轨道器减速,脱离卫星轨道再入大气层。进入大气层后按大攻角姿态飞行以增加气动阻力,进行减速和控制气动加热。飞行攻角随飞行速度下降而逐渐减小,最后进入亚音速滑翔飞行状态,在导航系统引导下寻找机场和着陆。着陆速度约为340~365千米/小时,需要的跑道长度为3000米。航天飞机由起飞到入轨的上升阶段运用火箭垂直起飞技术,在太空轨道飞行阶段运用航天器技术,在再入大气层的滑翔飞行和水平着陆阶段运用航空飞机技术,为人类自由进出太空提供了很好的工具,是第一次把航天与航空技术高度有机结合起来的创举,是航天史上的一个重要里程碑。四、航天器的运行 失重现象1.航天器的运行航天器在轨道上运行时所受地球引力始终指向地心,该力对地心的力矩始终为零。近地轨道处于稀薄大气中,航天器在这些轨道上运行时会受到与运动方向相反的大气的摩擦力作用,此力对地心的力矩不等于零,因而航天器的角动量逐渐减小,最后落回地球。对高轨道航天器,我们忽略其大气阻力和其它天体对它的作用,则其运行过程对地心角动量守恒。若轨道是圆形,则航天器作匀速圆周运动;若轨道是椭圆,则航天器在其远地点时速度最小,从远地点到近地点的运动过程中,速度不断增加,到近地点时速度最大,由近地点到远地点的运动过程中,速度又不断减小。2.失重现象在轨道上运行的航天器中,人和所有物体都处于失重状态,可以在空中自由漂移,没有上、下之别,人可以在地板上、天花板上、舱壁上行走。为什么会出现这种现象呢?航天器的轨道飞行是围绕天体的惯性飞行。运载火箭在航天器达到第一宇宙速度后与之脱离,由于受到地球引力的作用,航天器的飞行轨迹发生弯曲,而曲线运动会产生离心惯性(俗称离心力),这个离心力的大小正好与其所受地球引力相等,但方向相反。这两个力相互平衡而抵消,因而在航天器上形成了失重环境。当然,严格地说,只有在航天器的轴线上重力为零,离开轴线,则仍然存在微小重力。所以准确地说,航天器上为微重力环境。这种微重力环境给宇航员的日常生活和工作带来了诸多不便,他们必须经过长期而严格的训练才能适应,而对科学研究来说,这是一个极好的实验场所。五、空天飞机随着空间技术的发展,出现了将航空技术和航天技术有机地结合在一起的航空航天飞机,简称空天飞机,这是一种比航天飞机更先进的航天运载工具。与航天飞机相比,空天飞机具有更多的优点。空天飞机不仅推动效率高、耗油低、载重量大、飞行速度快,而且能够达到完全重复使用和大幅度降低航天运输费用的目的。在航天领域,它比航天飞机发射准备时间短,将载荷送入轨道的费用仅为航天飞机的5~10%,因而具有更高的经济效益;在航空领域,它能象普通飞机一样起飞,以高超音速在大气层内飞行,在30~100公里高空的飞行速度可达音速的12~25倍,并直接加速进入地球轨道。返回大气层后,可象飞机一样在机场着陆,并可自由方便地往返大气层。目前,美、英、法、德等国都在着手空天飞机的研制,不久的将来,它将加入航空航天飞行器的家族,成为天地间往返的运载工具。
物理知识系列讲座(二)——从自然哲学到现代物理学5——物理学对人类社会文明的贡献物理学对人类社会文明的作用和贡献主要体现在两个方面,一是对人的自然观产生深刻的影响。二是不断地推动了人类社会的物质文明和技术进步。一、 物理学的发展改变了人的自然观物理学作为一种知识体系,构成了现代文化的一个方面。它以尊重客观事实、推崇科学理念、追求和谐统一的观念,改变着人的思维方式。物理学的发展促使人们的自然观不断深化。物理学是人类战胜愚昧的武器,是走近文明的向导,是认识世界和改造世界的原动力。物理学对自然的解释和对自然规律的发现实现了从对自然界愚昧的认识到古代朴素的自然观、再到机械自然观以至现代科学自然观的多次飞跃。物理学的观点、理论、思维和研究方法和它的科学的思想精神渗透到社会科学和哲学等领域,对人们的世界观的转变必然产生积极的影响。物理学对经济和技术的促进作用,使人类的生产方式和人们的生活观念也发生了巨大变化。从亚里士多德关于物体运动的解释到力和力的本质的理解再到基本相互作用的认识,从托勒密地心说到哥白尼日心说再到现代宇宙观,从中国和古希腊的关于万物本原的认识到原子分子学说再到波粒二象性以及场和基本粒子的认识,人们对宇宙万物起源、物质结构、物质本性、运动和相互作用的理解经历了一次又一次的观念的转变。相对论改变了人们对时间、空间和运动的认识。科学革命从物理学开始,使人的思想从封建神学中的束缚中解放出来、以科学的理性去认识大自然的规律,这对于人类的整个思想文化都产生了历史性的影响。物理学研究扩展了关于大自然知识的疆界,物理学理论的发展已在多个方面把人类对自然界的认识提升到一个前所未有的高度。在微观领域内的研究已深入到基本粒子和亚核世界并引起了人们测量观、因果观的深刻变革。在宇观领域内的研究已扩展到1026m的宇宙范围和1017s的宇宙纪元并引起了人们时空观、宇宙观的变化。在宏观领域内的研究涉及到物质形态和运动形式多样性、复杂性,凝聚态和混沌现象等研究成果对已有知识体系形成了巨大冲击。尤其是近年来在介观领域内的研究(如原子团簇、纳米结构)又拓宽了人们对自然的认识范围。物理学也扩展和提高了人们对其它学科的理解如化学、生物学、农业科学、环境科学、地球科学、天文学、宇宙学等,使人们对自然界的认识更加全面而深入。二 、物理学是技术革命的源泉和动力物理学是各种技术学科和工程学科的共同基础。物理学的研究成果通过技术的方式直接转化为生产力,从根本上改变了人类的生产与生活方式,极大地推动了人类社会的发展与进步。1.力学和热学直接促进了第一次技术革命开始于十八世纪的第一次技术革命的主要标志是蒸汽机的发明和使用。蒸汽机的发明和改进以及动力机械技术吸取了当时许多物理学(力学和热学)研究成果,并非完全依靠经验。机器设计需要力学。在蒸汽机发明之前,已有一些热学研究的初步成果。托利拆里1643年发现了真空。德国的格里凯于1645年进行了有关大气压性质的马德堡半球实验,指出在真空状态下大气压可以转变为机械动力,并发明了真空泵。英国的波意耳1662年发现了气体实验定律之一—波意耳定律。有关热的现象与本质也有一些初步探索。牛顿力学理论也已经建立。正是在这样的物理学背景下,法国的巴本(1647-1714)于1690年发明了活塞式水蒸汽机,英国的塞维利(1650-1715)于1698年发明了蒸汽泵,英国的纽可门于1705年发明了空气蒸汽机。这些蒸汽动力装置被广泛地用于矿井排水作业和农田灌溉,但存在耗煤太多、效率很低、只能做往复直线运动的缺点。英国的瓦特运用当时萌芽的热学理论(比热、潜热概念等)对纽可门机进行了根本性的改进,于1765年研制成了与主汽缸分离的冷凝器,后来又变单纯的往复运动为转动、变单动为双动、采用1/2冲程利用蒸汽膨胀做功,大幅度提高了蒸汽机的效率。在瓦特以后的关于蒸汽机的发明大都是机械结构的完善。蒸汽机的发明促进了热学的发展,热学的发展又进一步推动了蒸汽动力技术的完善。在热力学定律的基础上,1876年,奥托发明了四冲程活塞机。以后,热机效率不断提高,同时利用膨胀蒸汽作功和力学原理研制出了气轮机、水轮机、内燃机及各种高压锅炉等,从而奠定了工业生产的动力基础。在力学和热学理论的指导下,蒸汽动力技术和机械技术的发明与改进,极大地推动了机械加工业、航海业、纺织业、交通运输业、矿业以及军事技术等各行业的迅速发展。2.经典电磁理论的创立为第二次技术革命开辟了道路以电的发明和使用为主要标志的第二次技术革命发生于十九世纪70年代。从此,人类开始了以电动力、电照明、无线电通信为基础的现代文明生活,电气化时代随即取代了机械化时代。十九世纪是电磁学的世纪,奥斯特、安培、法拉第等科学家在电磁相互作用、电磁感应等方面的划时代的研究成果奠定了电力电气技术的基础,使人类在生产生活中大规模利用电能的设想变成事实。麦克斯韦以其天才的数学才能,在法拉第有关“场”的思想和有关电磁现象的实验规律的基础上建立了经典电磁理论。经典电磁学理论是电工电子技术、电机电器制造、电力传输技术、有线和无线电通信、光学、微波和红外技术、电光源技术等技术领域的基础。发电机、电动机、变压器的发明,实现了电能与机械能等其他形式能量的转换及电能方便快捷的远距离输送。随着电机电器技术的发展,电能作为一种极为方便的二次能源的应用范围不断扩大,火力水力发电、电解、电镀、电热、电冶金等生产技术领域迅速扩展。与“电”有关的发明大大地提高了劳动生产率,也改变了人类的生活方式和生活质量。1879年爱迪生发明的电灯延长了人们的生产生活时间。电影的问世(1895年)、磁带录音和放音机(1898年)的发明丰富了人们的精神生活。1829年,美国的亨利进行了电报机的早期实验。1835年美国出现了第一台实用电报机。1849年西门子铺设了第一条长距离陆地电报线。1895年俄国的波波夫发明了无线电收发报机、同年意大利的马可尼成功地进行了无线电通讯试验并在1901年实现了大西洋两岸的的无线电信号传递。1876年贝尔发明了第一部电话机。1906年,美国实现了无线电有声广播。上述有线和无线通讯的发明使人类获取和传递信息的能力大大提高,是人类社会走向信息化时代的第一步。总而言之,没有电磁学理论,就不可能有第二次技术革命。3.以相对论和量子力学为基石的近代物理学引发了第三次技术革命20世纪40年代,人类社会迎来了以原子能、电子计算机和空间技术为主要标志的第三次技术革命。随之而来的是一系列高新技术如半导体与微电子、激光、超导、新能源技术、空间技术、海洋技术、信息技术、生物工程技术、新材料技术等迅猛崛起。半个多世纪以,各种高科技产业的形成和发展,深刻地改变着人们的物质与精神生活,使世界面貌发生了翻天覆地的变化。高新技术的理论基础是物理学尤其是近代物理学。爱因斯坦的相对论质能关系和核物理学的研究成果,使核能的利用成为现实。 爱因斯坦《关于辐射的量子理论》的论文中提出的受激辐射概念为激光器的问世奠定了理论基础。由量子力学而导致的第一只晶体管的发明为人类带来了规模空前的微电子产业,其中超大规模集成电路技术使计算机、卫星电视、移动电话、各种自动控制器等一系列高科技产品进入了现代社会。原子分子物理直接推动了电子、光电子、激光产业的发展,以量子理论为基础的凝聚态物理是新材料产业发展的动力。信息的获取、处理、和传输,离不开物理学原理的支持。信息处理的关键技术是计算机技术,为了大幅度提高计算机运算速度,全新概念的新一代计算机(量子计算机、超导计算机、光计算机、模拟人脑的神经网络计算机)是重要的发展方向,物理学将在理论和实验上提供雏形。物理学的发展使通讯技术实现了从有线通讯到无线通讯、微波通讯、卫星通讯,再到光纤通讯的飞跃,正在研究的光孤子通讯的信息传输量将是光纤通讯的10万倍以上。实现信息获取与转换的传感技术也必须依赖于物理学原理。生命科学、生物技术、医疗设备与物理学密切相关。物理学为生命科学提供了各种研究手段。源于物理技术的x光照片机、核磁共振扫描仪、正电子和x光断层扫描成象设备、γ刀、激光、超声波探测装置(B超)等高科技产品广泛地用于医学诊断和治疗。新能源包括核能、太阳能、风能、地热能等,新材料和新器件包括各种结构材料和功能材料器件,军事尖端武器包括核武器、小型核子武器、弹道导弹、巡航导弹、导弹防御系统、军用卫星、隐身飞机、强激光武器、高功率微波武器、粒子束武器、反物质武器、电磁炮等,新的交通技术如磁悬浮列车,以及各种高新技术都依赖于物理学的研究成果。三 、物理学与技术进步的关系物理学和技术的发展有着互相依赖、互相推动的关系。在历史上,物理学与技术的相互关系曾表现出两种模式。对以蒸汽机的使用为特征的第一次技术革命来说,尽管蒸汽机的发明吸取了早期物理学的研究成果,但更多的是生产和技术向物理学提出问题和挑战,从而促进物理学理论的发展。反过来,物理学又更深刻地影响技术的进步和生产力的发展。这就是所谓的“生产、技术—物理—技术、生产”的发展模式。例如,热机的发明和不断改善及其在工业上的广泛应用,促使人们去深入研究各种物质的热性质和热运动规律,对热现象的研究走上了实验科学的道路,逐渐形成了完整的热学理论。热学理论又指导热机技术的改进,热机效率不断提高。18世纪末,蒸汽机的效率只有5-8%,20世纪蒸汽机的效率达到15% ,内燃机效率达到40%,燃气涡轮机的效率达50%。从根本上改变人类社会面貌的是第二种发展模式即“物理—技术、生产—物理”,这在第二次和第三次技术革命中充分体现了出来。在这种模式中,开始基本上是对自然现象、规律的探索和知识的积累,并没有实际的应用研究和为生产服务的目的。一旦物理学理论被人们所掌握并在实践中得到应用,带来的将是技术的巨大进步和生产力的大解放,技术进步又将物理学推向一个新的发展起点。库仑、奥斯特、安培、麦克斯韦等人长期研究所建立的电磁学理论,导致了以电气化、无线电通讯为特征的第二次技术革命。第三次技术革命所诞生的高新技术,无一不需要前期的物理学理论和实验知识的积累。例如,没有爱因斯坦的相对论质能关系以及量子力学和核物理的研究成果,就不会有原子能。没有爱因斯坦的受激辐射理论,就不会有激光技术。没有量子力学以及在它基础上建立的固体理论、半导体理论,就不会有晶体管,也不会有大规模集成电路和今天的信息技术。然而,现代物理学发展十分迅速,物理分支学科和边缘学科大量涌现,也得益于技术进步。物理学是现代科学技术的基础,反过来科学技术又促进了物理学的发展。物理学在过去、现在乃至今后都处于中心学科的地位。它将不断推出新思想、新原理和新方法,孕育着高新技术和新兴产业的生长点,其发展关系到整个社会的进步和变化。物理学发展着未来技术进步所需的基本知识,而技术进步将持续驱动着世界经济发动机的运转。物理与技术相互促进,是推动人类社会向前发展的强大动力。
物理知识系列讲座(二)——从自然哲学到现代物理学4——20世纪物理学的发展19世纪末,物理学包括力学、热学、电磁学和光学都已形成了完整的理论体系。不少人认为, 物理学大厦已经落成,物理学上基本的、原则的问题已经解决,伟大的发现不会再有。然而,在这一段时间却陆续出现了许多无法用经典理论解释的实验事实,从而引发了物理学史上一场暴风骤雨式的革命,导致了现代物理学的诞生。一 、现代物理学革命的开端在经典物理学似乎已经非常完善的时候,机械的自然观随之确立。1894年,美国物理学家迈克耳孙(A.A.Michelson 1852-1931)在一次演说中宣称,基础物理中作出新发现的年代可能已经过去,未来物理学真理将不得不在小数点后第六位去寻找。英国物理学家开尔文在1900年为展望20世纪物理学而发表的讲演中说:“在已经基本建成的科学大厦中,后辈物理学家只要做一些零碎的修补工作就行了。”“但在物理学晴朗天空的远处,还有两朵小小的令人不安的乌云”。正是这两朵小小的乌云(指当时无法解释的热辐射实验和迈克尔孙-莫雷实验),掀起了物理学革命的高潮。而三个重大发现(x射线、放射性、电子的发现),揭开了近代物理的序幕。1.世纪之交的三大发现(1)电子的发现在19世纪与20世纪之交,物理学有一系列新发现,其中电子、x射线和放射性三大发现具有根本的意义,但它们都来源于对阴极射线的研究。阴极射线是低压气体放电过程出现的一种奇特现象。1858年,德国物理学家普吕克尔(Julius Plucker 1801-1868)在观察放电管中的放电现象时,看到正对阴极的管壁发出绿色的荧光,而且在磁铁的影响下,荧光光斑会移动。1876年,德国的哥尔德斯坦(Eugen Goldstein,1850-1930)认为这是从阴极发出的某种射线并称之为阴极射线并且把阴极射线视为类似于紫外线的以太波。赫兹把它看成是电磁辐射。1871年,英国的瓦尔利(Cromwell Fleetwood Varley,1828-1883)根据阴极射线在磁场中偏转的事实,设想它由带负电的微粒组成。英国的克鲁克斯,证实阴极射线可以传递能量和动量,且认为是残余气体撞到阴极而带上负电、在电场中形成了分子流。于是对阴极射线的解释形成了以太说和带电微粒说两种不同的观点。真正对阴极射线的本性作出正确解释的是英国剑桥大学教授J·J·汤姆逊(Joseph John Thomson,1856-1940)。他从1890年起,就带领学生通过一系列实验(如阴极射线的静电偏转和磁偏转、携带的电荷和荷质比的测量等)研究了阴极射线的本性,证明了阴极射线是带负电的粒子流,而且荷质比是氢离子的2000倍左右,用不同气体充入管内、用不同的金属阴极,所得到的射线或粒子流性质相同,说明阴极射线粒子是所有物质共有的,那么它应是比原子更小的粒子,原子不可再分的传统观念将被打破。19世纪末,原子论还刚确立,人们认为每种元素由一种原子构成,氢原子是最小的粒子。可以想象,提出比原子更小的粒子的思想,是多么富有胆识。1899年,汤姆逊采用斯通尼(G.J.Stoney,1826-1911)的“电子”来称呼这种粒子(这个名称是斯通尼在1891年用来表示电的自然单位的)。他又通过进一步的研究判断,不论是阴极射线,还是光电粒子流、热电粒子流、β射线都是电子流。而且通过测量证明光电粒子电量的大小大约与氢离子电量相同,从而说明电子的质量约为氢原子的1/2000。汤姆逊由于发现电子而获得诺贝尔奖(1906)。美国物理学家密立根(Robert Millikan 1868-1953)在1907-1913年通过著名的油滴工作测量出电子电量使他获得了1923年度诺贝尔物理学奖。虽然普遍都认为是汤姆逊发现了电子,更准确地说是汤姆逊发现了自由电子。而预言和发现原子内部的束缚电子的是洛伦兹和他的学生塞曼。荷兰物理学家洛伦兹(Hendrik Antoon Lorentz,1853-1928)是经典电子论的创立者,最先对电子的各项性质作出科学的预言。他把媒质的电磁和光学性质归于媒质中的带电粒子,认为物质中的原子、分子是由带电粒子构成的,原子内部带电粒子的振动产生光。1892年他开始发表电子论论文,不过当时没有使用电子这个词。1896年,塞曼(Piter Zeeman,1865-1943)发现了原子光谱在强磁场中的分裂的现象(塞曼效应),洛伦兹用电子论对此做了解释:光是由原子内部带电粒子振荡发射出来的,而带电粒子的运动当然要受到磁场的影响,从而导致磁场中原子光谱线的分裂。塞曼效应的发现,实际上确认了原子内部存在电子。因此,1902年的诺贝尔物理学奖授予给了洛伦兹和塞曼。(2)x射线的发现 x射线是德国的伦琴(Wilhelm Konrad Rontgen,1845-1923)发现的。1895年11月8日傍晚,伦琴在实验室做阴极射线管气体放电实验。他在暗室中做实验,把放电管用黑纸包起来以免受可见光的影响。他惊奇地发现,在放电时,离放电管一段距离的一个涂有亚铂氰化钡的荧光屏发出闪光。他确信不可能是阴极射线引起的,因为阴极射线的穿透能力弱,不可能穿过放电管的玻璃外壳。他意识到已经发现了一种新的射线。由于不了解它的性质,故取名为x射线。又经过一个多月的反复实验发现,这种射线人眼看不见,具有很强的穿透性,能穿透许多普通光线不能穿透的材料(但一两个毫米厚的铅板基本上能挡住它),直线传播而不被磁场偏转,可使荧光物质发光、使照片底片感光,能显示人手骨骼、盒子里的砝码等。1896年1月,他把《论一种新射线》的报告并附上手掌的x射线照片以通信的方式公之于众。这一发现在全世界引起了轰动,许多人都开始对x射线进行研究,而且广泛地用于人体内部的医疗诊断。伦琴因此获得了首届诺贝尔物理学奖(1901年)。x射线的本性到底是什么?直到1912年,德国的劳厄(Max Theodor Felix von Laue,1879-1960)通过x射线在晶体中产生衍射的实验,才证实x射线是波长很短的电磁波,只不过穿透力更强。劳厄因此获得1914年度的物理学诺贝尔奖。英国的莫塞莱(H.G.J.Moseley,1887-1915)于1913年证实x射线是原子内层电子跃迁所发出的辐射。现在我们已知道,伦琴发现的x射线是阴极射线管中被高电压加速的高速电子打到靶上,与靶原子碰撞骤然减速而产生的。(3) 放射性的发现 放射性是在对x射线的研究中发现的。由于当时发现的x射线来源于玻璃管壁的荧光部分,使得一些物理学家设想x射线有可所能来自荧光或磷光物质。法国物理学家贝克勒尔(Henri Antoine Becquerel,1852-1908)最先进行这项实验。1896年1月20日,庞加莱(Henri Poincare,1854-1912)在法国科学院例会上介绍伦琴的发现时问道,是否荧光物质在发荧光时也发出x射线?这句话触动了在场的贝克勒尔。贝克勒尔立即着手研究哪些荧光或磷光物质能产生x射线,结果是他所试验的物质并不发出x射线。2月下旬,他改用能发磷光的铀盐做了多次实验,发现铀盐能自发地发射出可穿透黑纸的射线,进一步研究发现这种射线还能使照相底片感光、使气体电离、象x射线一样穿透几乎一切物质,但同x射线和荧光完全无关。人们称这种射线为“贝克勒尔射线”。“放射性”是后来居里夫人取的名字。居里夫妇又把贝克勒尔的工作推向深入。居里夫人(Maria Sklodowska Curie,1867-1934)的丈夫皮埃尔·居里(Pierre Curie,1859-1906)早期研究晶体、压电现象和磁性,曾发现过铁磁性转变的居里定律,在科学界享有盛誉,婚后与马丽·居里一起研究放射性。他们不局限于铀盐,决定对各种元素进行普查。经过艰苦的提纯和试验,1898年4月发现了钍有放射性,7月发现了放射性是铀的几百倍的钋,9月发现了放射性是铀的百万倍的镭。钋和镭的发现大大促进了人们对放射性的研究。1899年,贝克勒尔发现镭发出的射线能被磁场偏转。卢瑟福(Ernest Lord Rutherford,1871-1937)等人又发现天然放射性是由几种不同的射线组成的,其中有两种带电的射线(一种带正电,一种带负电,分别命名为α射线和β射线,后证实为氦核流和电子流)。法国的维拉德(Paul Villard,1860-1934)又发现镭还有不带电的第三种射线,被叫做γ射线。卢瑟福等经过研究认为,放射性过程伴随着元素的蜕变。元素不变的观念受到了冲击。居里夫人总之,电子的发现证实原子是有结构的,x射线是电子内层轨道跃迁产生的,也与原子结构有密切联系,它们的发现是原子物理的开端。放射性射线是原子核内发出的,它的发现打开了核物理的大门。2.两朵令人不安的“乌云”开尔文于1900年4月27日在英国皇家学会作了题为《在热和光动力理论上空的19世纪乌云》的演讲,这两朵乌云就是关于以太漂移速度测定“零结果”解释的困难和关于能量均分定理对热辐射和固体比热解释的困难。以太学说的困惑 以太观念的提出,可以追朔到古希腊时代。亚里士多德认为,天体间一定充满有某种媒质。笛卡儿曾提出用以太旋涡理论解释天体的运动。惠更斯认为以太是光波传播的载体。牛顿关于光的微粒说又否定了以太说。19世纪,光的波动理论复兴,以太说又重新引起人们的关注。光波动说支持者认为,光波能通过真空,说明空间存在以太载体。法拉第把以太看作是电、磁力线的荷载体。麦克斯韦设想用以太的力学运动来解释电磁现象,他的光的电磁理论又把电磁现象的媒质和光的以太统一起来。此后,以太的存在在物理学界获得了广泛的承认。人们认为:以太是传播光和电磁波的媒质,是充满全部空间、绝对静止、及其稀薄的刚性物质;相对于静止的以太,光或电磁波的传播速度必然是各向同性的;以太是一种特殊的惯性参照系,在这样一个参照系中,麦克斯韦方程取标准形式,光在以太中沿各个方向的传播速度都为c(真空中的光速);对其他相对于以太运动的参照系,按速度合成法则,光和电磁波的传播速度不是c,麦克斯韦方程不成立。这样,以太参照系便成了“绝对空间”,利用在静止以太中以恒定速度传播的光信号,又可以确定出宇宙空间一切地点都同步的“绝对时间”。于是,以太就成了牛顿绝对时空观的物质化身。因此,人们一直试图用实验证实以太的实际存在,但到19世纪还没有这样的实验能给予直接的证明。既然以太是静止的,那么从相对于以太运动的物体上来看,好象以太在漂移。从地面上看,以太相对于地球的漂移会形成与地球运动相反方向的“以太风”。只要测定出以太相对于地面的漂移速度,就能证实以太的存在。麦克斯韦建议,如果可以在地面上从光由一站到另一站所经历的时间测得光速,那么就可以比较相反方向的光速来确定以太相对于地球的漂移速度,但此方法在测量上是困难的。到1879年,虽然有许多学者以不同的方法进行过多次有关以太测量的实验,但还没有一个实验能测出上述漂移速度。迈克尔逊是当时精密光学测量方面的著名专家(他因发明精密的光学仪器以及进行的精确计量和光谱学的研究于1907年获得过诺贝尔物理奖),以他名字命名的干涉仪,其灵敏度达10-8。他于1881年第一次在德国进行以太漂移的测量,后来又与化学家莫雷合作改进实验精度,于1887年在美国进行测量,但得到的都是以太漂移速度为零的结果。这就是说,没有什么以太风,不同的方向光速相同。洛伦兹(Hendrik Antoon Lorentz,1853-1928)为了解释迈克尔逊-莫雷实验,竞提出了十一个假设但都不能自圆其说。这意味着寻找特殊参照系的企图失败,经典物理赖以建立的牛顿的绝对时空观遇到严重困难。因此,开尔文把以太漂移的“零结果”看作是一朵“乌云”。能量均分定理的困难 能量均分定理的困难首先在固体比热问题中表现出来。把这一定理用到固体比热理论,可以推出固体比热为恒量,虽有少数固体的比热有偏离,但没有造成严重困难。到19世纪末,随着低温技术的发展,实验发现固体比热随温度的降低而普遍减少,在温度极低时趋于零。理论与实验之间出现了明显的矛盾。把能量均分定理应用于热辐射实验规律的解释同样存在问题。1879年,奥地利物理学家斯忒潘(Joseph Stefan,1835-1893)从实验中总结出,黑体辐射总能量与绝对温度的四次方成正比(w=?T4)。1884年玻尔兹曼由经典电磁学和热力学从理论上导出了这一结果,故称之为斯忒潘-玻尔兹曼定律。1893年德国物理学家维恩(Wilhelm Wien,1864-1929)也根据电磁学和热力学理论提出了维恩位移定律即热辐射能量强度最大所对应的波长与温度成反比(λmT=b)。1896年,维恩又从热力学理论出发建立了辐射能量密度的分布公式—维恩公式。这个公式被认为与实验结果符合很好。维恩因热辐射研究的贡献获得了1911年诺贝尔物理学奖。但是随着实验技术的进步,发现维恩公式只在短波长、温度低时才与实验符合。英国的瑞利(Lord Rayleigh,1842-1919)试图推出一个新的公式来消除维恩公式在长波长范围与实验之间的偏离。他假定辐射空腔内的电磁辐射形成一切可能的驻波,根据经典能量均分定理确定每一驻波平均能量为kT,由此导出了一个辐射能量密度的分布公式。由于瑞利的公式中错了一个因子,后被金斯(Jams Hopwood Jeans,1877-1946)于1905年所纠正,故称为瑞利-金斯公式。这个公式在长波范围与实验符合很好,但在波长很短(紫外端)时,辐射能量密度却出现无穷大即造成发散。这个结果后来被称为“紫外灾难”。这就是开尔文所说的第二朵“乌云”。3.现代物理学革命的开端开尔文希望他所提出的两朵乌云在经典物理学的框架内很快消散。它们不但没有消散,而且演变成了一场暴风雨。正是在这两朵乌云里,孕育了两个伟大的革命性的理论—相对论和量子论。当时,相当多的物理学家都认为物理学正处于危机之中,情绪低落。同时也有一批眼光锐利的物理学家,表现出对物理学未来发展充满信心。法国物理学家庞加莱就是其中最有影响的代表人物。他认为,物理学的这种危机并非凶兆而是吉兆,物理学有必要重新改造。他说:“也许我们将要建立一种全新的力学,我们已经成功地瞥见它了”。实际上,电子的发现打破了原子不可分的传统观念,开辟了原子物理学新领域;放射性的发现为原子核物理作好了必要的准备;以太漂移测定的失败为狭义相对论的创立提供了重要依据;经典理论对热辐射解释所暴露出来的问题是量子理论建立的前奏。在世纪之交的年代,物理学正在向微观、高速领域进发。二、 爱因斯坦相对论的建立1.狭义相对论的诞生狭义相对论是关于时间、空间和物质运动的理论。它是20世纪以来物理学发展最伟大的成就之一。它和量子力学构成了现代物理学及高技术发展的基石。狭义相对论的建立,对人类时空观、物质观、运动观、宇宙观都有重大影响。在爱因斯坦狭义相对论建立之前,洛伦兹和庞加莱做了先行性的工作。为了说明迈克耳逊-莫雷实验的结果,洛伦兹于1892年提出了长度收缩假说,认为物体相对于以太运动时在运动方向上长度缩短,而这种长度收缩是分子力引起的真实现象。然而这种收缩没有得到实验验证。如,物体在运动方向缩短将导致该方向密度增大,透明物体在运动中将显示双折射现象,而实验是否定的。庞加莱对洛伦兹的理论提出了许多批评和改进,洛伦兹又对自己的理论进行了多次修改,最终提出了两个惯性系之间的坐标和时间的变换关系式即著名的洛伦兹变换。洛伦兹还导出了质量与速度关系以及光速是物体在以太中运动速度的极限。庞加莱证明了一切洛伦兹变换构成一个群,并且表述了相对性原理和光速不变原理。庞加莱的表述已类似于爱因斯坦狭义相对论的基本原理,但在实质上还是有明显差别的。庞加莱承认以太的存在,而且认为只有在静止的以太中光的传播速度才严格为c。洛伦兹和庞加莱已经走到了狭义相对论的边缘,只因他们未能跳出绝对时空观的框架,而无缘创立狭义相对论,但他们为相对论所做的先驱性工作是不可否认的。只有爱因斯坦能打破传统观念的束缚,凭着自己的独立思考,创立了崭新的革命性的物理学理论—相对论。爱因斯坦(Albert Einstein,1879-1955),一位举世闻名的科学家。1905年,26岁的爱因斯坦发表了涉及三个领域(光量子概念、布朗运动理论、狭义相对论)的四篇重要论文,他的每一篇论文都足以使他在物理学史上占据不朽的地位。1916年发表广义相对论。同年还发表了论文《关于辐射的量子理论》,提出了自发辐射和受激辐射以及跃迁几率的概念,奠定了激光的理论基础。1917年他用广义相对论的结果研究了整个宇宙的结构,开创了现代宇宙学。1921年,因提出光量子理论获得诺贝尔物理学奖。1924年,建立了玻色-爱因斯坦统计,论述了波与物质的关系并非光所特有。1933年因成为纳粹迫害对象于10月到美国定居,任普林斯顿高级研究所研究员。1950年发表了新的统一场论的论文。1955年4月逝世。爱因斯坦一生的贡献不仅是相对论,在其他理论物理学领域(包括量子论、统计理论、激光理论和凝聚态物理)也有非常重要的地位。不少物理学家认为,以他的成就至少有5次获得诺贝尔奖的资格。爱因斯坦少年时代的爱因斯坦就萌发了相对论思想。他在16岁时就想到了一个追光的理想实验:“如果我以光速追随光线运动,我应该看到这样一条光线,就好象一个在空中振荡着而停滞不前的电磁场。可是,无论是经验还是按照麦克斯韦方程,看来都不会有这样的事情。从这样一个观察者的观点来判断,一切都应当象一个相对于地球是静止的观察者所看到的那样按照同样的规律进行。因为,第一个观察者怎么会知道他是处在均匀的快速运动状态中了?”这种非同寻常的思考,充分显示了他高超的才智和敏锐的洞察力。爱因斯坦对此类问题的思考,经历了10年的时间。这期间,他设计过测量地球相对于以太运动的实验(但未进行),阅读了洛伦兹的著作,取得了观念上的突破。奥地利物理学家马赫(Ernst Mach,1838-1916)关于牛顿绝对时空观的批判,也对爱因斯坦的思想产生了深刻的影响(爱因斯坦称马赫为“相对论的先驱”)。爱因斯坦后来谈到迈克尔逊实验零结果对他的影响时说过:“如果承认迈克尔逊的零结果是事实,那么地球相对于以太运动的想法就是错误的,这是引导我走向相对论的最早想法”。在爱因斯坦一篇手稿中还说道:“法拉第电磁感应实验对我的思考起了主导作用。因为在磁体对导体回路有相对运动时,导体回路就会有感应电流。但如果分别以导体和磁体为参照系,理论解释却截然不同。从磁体看肯定没有电场,而从导体回路看肯定有电场。于是电场的有无就是相对的了。这只能假设电场与磁场的总和是客观现实。电磁感应现象迫使我假设相对性原理”。经过10年的思考,爱因斯坦终于在1905年6月创立了惊世骇俗的狭义相对论。这一年,爱因斯坦发表了《论动体的电动力学》这一历史性文献,完整地阐述了狭义相对论,揭示了空间、时间的联系,从而引起了物理学的革命。他果断地把“相对性原理”(物理规律对所有惯性系都一样)和“光速不变原理”(在任何惯性系中,光在真空中速度相同)两条似乎矛盾的设想作为狭义相对论的基本出发点。在他的理论里,以太的概念是多余的,不需要特设绝对静止的参照系。爱因斯坦不象洛伦兹那样先假设某种时空变换关系,而是以两个公设导出时空变换关系,进而又推导出运动物体“长度缩短”、运动的“时钟变慢”、“同时的相对性”及新的速度变换法则等。由此形成了一套全新的时空观,而且包容了经典时空观。同年9月,爱因斯坦又发表了另一篇关于相对论的论文《物体的惯性同它所含的能量有关吗?》,提出了著名的质能关系E=mc2,在理论上为原子能时代开辟了道路。爱因斯坦关于狭义相对论的论文发表后,相对论曾一度遭到冷遇和非议。相对论时空观一时难于被人们接受,以太观念在人们的头脑中根深蒂固。迈克尔逊、汤姆逊、斯塔克,甚至被爱因斯坦称为相对论先驱的马赫都坚决反对或不承认爱因斯坦的相对论。有人认为爱因斯坦只是对庞加莱和洛伦兹的“相对论”作了补充。但普朗克、闵可夫斯基和劳厄等科学家却是相对论的坚定支持者。1908年闵可夫斯基把时间和空间合为四维空间,使相对论规律的表达更加简洁。1911年,劳厄写了第一本介绍狭义相对论的专著《相对性原理》。后来有许多实验证明了狭义相对论包括广义相对论的正确性,例如测量出的电子荷质比与电子速度的关系证明了爱因斯坦的相对论质速关系,等等。相对论才逐渐被人们所接受。2.广义相对论的创立在狭义相对论建立以后,爱因斯坦又发现了它有局限性。按照狭义相对论,物理定律在各个惯性系中都成立或等价,而对非惯性系则不成立。他想,为什么惯性系会有这种特殊地位呢?什么是惯性系?按照牛顿力学,凡是与做惯性运动的物体相固联的参照系就是惯性系,相对于惯性系做匀速运动的参照系也是惯性系,但相对于惯性系做加速运动的参照系是非惯性系。如何确定物体在做惯性运动呢?最终还是需要一个绝对空间才能确定。许多人包括爱因斯坦本人也在怀疑。爱因斯坦通过进一步思考,认为必须放弃惯性系的优越地位。一个更为普遍的广义相对论由此诞生了。爱因斯坦开始把相对性原理推广到非惯性系,从惯性质量与引力质量相等出发(牛顿第二定律中的质量是惯性质量,万有引力定律中的质量是引力质量),建立了“等效原理”(引力场和加速度等效)。他设想,在自由下落的飞船内,宇航员无法通过任何力学实验来确定飞船的加速度。这表明,不仅匀速直线运动有相对性,而且加速运动也有相对性。这一广义的运动相对性不仅适用于力学现象,也适用于其他物理现象,由此确定了“广义的相对性原理”(物理定律对无论以何种方式运动的参照系都成立)1915年,爱因斯坦创立了广义相对论。这一理论,揭示了空间、时间、物质、运动的统一性以及几何学和物理学的统一性,解释了引力的本质,为现代天体物理和宇宙学的发展打下了重要的基础。狭义相对论告诉我们,空间和时间不是绝对的,它们和参考系(物体)运动有关。广义相对论告诉我们,在引力物体的近旁,空间和时间要被扭曲,行星的轨道运动并不是由于什么力的作用,而是由于这种时空的扭曲引起的,引力就是时空弯曲的表现。广义相对论的基本论点是:引力来源于弯曲。爱因斯坦提出了三项关于广义相对论理论的实验检验:水星近日点的进动、光线在引力场中弯曲、光谱线的引力红移。这已是确证了的事实。后来有人提出通过观察雷达回波延迟来证实广义相对论,结果是满意的。广义相对论在天体物理学和宇宙学上的成功应用,日益引人注目。60年代以来,关于类星体、脉冲星、3k宇宙微波背景辐射的发现给广义相对论提供了有力的支持。迄今为止,广义相对论的应用主要是在宇观领域。广义相对论是解决天体运动的有力工具,以它为基础的引力理论是目前最好的引力理论。三、 量子力学体系的形成量子力学是研究微观世界的基本理论,与研究高速运动的相对论一道成为了现代物理学的两大理论支柱。狄拉克等人又把相对论和量子力学结合起来,创建了研究电磁场与带电粒子相互作用的量子电动力学。量子力学的建立使人们的对物质世界的认识实现了从宏观到微观领域的重大飞跃。1.早期的量子论早期的量子论有三个主要标志即普朗克能量子假说、爱因斯坦光量子假说和玻尔的氢原子理论。(1)普朗克能量子假说由于经典物理所导出的公式(如维恩公式、瑞利-金斯公式)不能很好地解释热辐射实验规律,出现了所谓的“紫外灾难”。这一问题引起了越来越多的关注。德国著名的物理学家普朗克(Max K.E.L.Planck,1858-1947)最先在这个问题上取得突破,他决心把维恩公式和瑞利-金斯公式统一起来。普朗克首先找到了与实验结果符合很好的内插公式即普朗克公式,接着又寻求这一公式的理论解释。他设想,辐射空腔内有数目很多的能与周围电磁场交换能量的谐振子—辐射着的物质中心,振子能量只能取分立值且是最小能量单元的整数倍,其中最小能量单元(能量子)ε=hν(h的数值为6.65×10-27尔格·秒人们称为普朗克常量)。然后根据玻尔兹曼熵公式和热力学公式,最后从理论上导出了普朗克辐射公式。 1900年12月14日,普朗克在德国物理学会会议上宣读了他的有关能量子假设和辐射理论的论文,这一天被看作量子论的诞生日。普朗克能量子思想完全违反了经典物理学中能量连续的观念。普朗克把不连续性(或量子性、离散性)引入物理学,使人们对微观领域的本质有了新的认识,对现代物理学的发展产生了革命性的影响。他因此获得了1918年诺贝尔物理学奖,1920年起成了德国科学界的最高权威。但是普朗克假说提出后,在当时还不能被大多数物理学家所接受,他本人也不满意。普朗克试图把自己的辐射理论纳入经典框架,却未能成功。几年后,爱因斯坦和玻尔等人的工作,更显示了能量子的重要意义。(2)爱因斯坦光量子理论1905年,爱因斯坦发表了《关于光的发射和吸收的一个启发性观点》,提出了比能量子概念更具有革命性的光量子假说,圆满地解释了光电效应。光量子可以看作一种以光速运动的粒子,其量子性不仅存在于光的产生和传播过程中,也存在于光的传播和与物质相互作用的过程中。1926年,美国的刘易斯(1875-1946)把光量子命名为“光子”。光电效应是赫兹在1887年研究电磁场波动性时偶然发现的。1899年,汤姆逊在测量光电流的荷质比后,发现光电流象阴极射线一样也是电子流。1899-1902年,勒纳德((Philipp Lenard,1862-1947)对光电效应进行了系统研究。他发现,电子逸出金属表面的最大速度与光强无关(按经典理论,逸出的动能应与光强成正比)。在他之前,还有人发现存在光的频率的临界值(低于此值,无论多大光强都不会产生光电效应,按经典理论应该没有临界值)和光电流产生的瞬时性(按经典理论,电子能量有积累过程)。爱因斯坦对光电效应的解释,克服了经典理论遇到的困难。他提出了光电方程,方程的含义是:能量为hν的光子流射向金属表面,一个光子被一个电子吸收,电子克服逸出功脱离表面,余下的是电子动能,如果光子能量不足以克服逸出功,就不会产生光电效应。于是,光的微粒说又回来了,但爱因斯坦的光的微粒说并非牛顿的光的微粒说。爱因斯坦认为,光量子不是单纯的粒子,它的动量和能量是同频率联系着的,而频率是一个波动概念,因此光具有波粒二象性。1916年,美国的密立根通过对光电效应进行定量的实验研究,完全证实了爱因斯坦理论,而且用光电效应实验测出了普朗克常量h=6.56×10-34J·s,人们才认识到光量子理论的正确性。因此,爱因斯坦和密立根都因为光电效应的研究分别获得1921年和1923年诺贝尔物理学奖。1923年,美国物理学家康普顿(A.H.Compton,1892-1962)在研究x射线对物质的散射时,发现了散射的x射线的波长随散射角的不同而变化(康普顿效应)。他假设,光子与静止的自由电子碰撞,并用相对论动量守恒和能量守恒导出了康普顿散射公式。我国学者吴有训(康普顿的学生)测试了各种元素对x射线的散射曲线,证实了康普顿效应的普遍性。康普顿效应既是对光子理论也是对相对论的有力支持。印度物理学家玻色(Satyendra Nath Bose,1894-1974 ),完全脱离经典理论,把辐射视为光子理想气体,也导出了普朗克公式。玻色的工作又是量子统计理论的开始。爱因斯坦把玻色的方法推广到单原子气体,被称为玻色-爱因斯坦统计方法。(3)玻尔理论电子的发现使人们认识到原子是有内部结构的。在此之前,人们对原子内部一无所知,只能把原子看成一个不可分割的整体。电子带负电,而原子是电中性的,在原子内部必然有带正电的部分。原子内部正负电荷之间如何作用?原子内电子数目有多少?怎样解释分立光谱、元素周期性和放射性?这些都是要解决的问题。为此,人们便提出了许多不同的原子结构模型。早期有代表性的原子结构模型有:(1)土星环模型。长岗半太郎(1865-1950)在1903年提出了原子的土星环模型,假设一个大而重的正电球位于原子中心,数千个电子排成一个环,在正电球的引力作用下围绕中心旋转,象土星的光环。该模型不能解决原子稳定性问题,但却提出了原子核的观念。(2)动力子模型。1902年,勒纳德设想,原子内部有大量空隙,每个电子和相应的每个正电荷组成一个中性微粒(取名为“动力子”),无数的动力子漂游在空旷的“原子太空”中。该模型未获得实验证实。(3)实心带电球模型。汤姆逊假设原子带正电的主体部分象流体一样均匀分布在一球体内,而电子象“葡萄干”一样嵌在球体内各点。该模型与观察到的氢原子光谱有矛盾,也不能解释α粒子的大角度散射。但它的意义在于打破了原子中正负电荷对称的观念。(4)行星模型。卢瑟福在α粒子散射实验中发现,α粒子通过铝铂时,有1/8000的粒子散射角超过900,甚至反弹。这是汤姆逊模型所不能说明的。长岗土星模型对他有启发。他根据实验结果确认,质量很大而体积很小(半径小于10-12cm)的正电荷(+Ze)在原子中心,电子象行星一样绕核旋转。但该模型结合经典理论不能解释氢原子离散光谱(瑞士一位中学教师巴尔末(JohannJokeb Balmer,1825-1898)已经找到了氢原子可见光谱的计算公式)和原子稳定性。因为电子绕核运转时发射电磁波,能量乃至运动半径将连续减小,电子会落到核上,看到的将是连续光谱且原子不稳定(事实上,原子恒古不变,是稳定的)。丹麦著名物理学家玻尔((N.Bohr,1885-1962)统一了卢瑟福模型、普朗克假说、爱因斯坦光子理论和光谱学知识,创造性地提出了自己的原子结构模型。玻尔认为,只有量子假说才能使卢瑟福模型摆脱原子稳定问题的困难。玻尔假设:核外电子只能在一系列分立轨道上运动但不辐射电磁波;一条轨道对应于一个能量值,原子有能级;轨道要满足角动量量子化条件;电子在不同轨道上跃迁时才会产生光的辐射和吸收,相应的光波频率由两轨道能量差确定。他运用经典力学和量子化条件,得到了氢原子定态能量,进而成功地解释了氢原子光谱,而且预言了氢原子光谱中紫外区的赖曼系列。不久,玻尔的定态能级理论被德国的弗兰克和G·赫兹(发现电磁波的H·赫兹的侄儿)用实验证实。玻尔因对原子结构研究的贡献获得了1922年诺贝尔物理学奖。玻尔模型虽然能很好地解释氢原子和类氢离子光谱,但不能计算谱线强度。索末菲对玻尔理论作了全面推广包括椭圆轨道理论和相对论修正,由此带来了角量子数、能级简并概念及光谱精细结构。1912-1914年,劳厄、巴拉克(Charles Glower Barkla1874-1944)、莫塞莱(H.G.J.Moseley,1887-1915)、西格班(Karl Geoge Siegbahn,1886-1978)等人对原子内部x射线辐射进行了仔细的实验研究,揭示出了原子内部电子壳层结构状况,准确确定了各元素原子序数与核电荷数相等的性质。玻尔理论的一个最重要的成果还在于建立了经典概念与量子概念的对应原理,得到了计算原子光谱尤其多电子原子光谱强度、偏振等一套方法。1920年以后,玻尔又研究了多电子原子系统,获得了对元素周期表的认识。波尔然而,玻尔理论由于没有从根本上脱离经典框架,量子化条件的引入在逻辑上也不自洽,因而有明显的局限性。玻尔理论被人说成是“量子观念和经典力学的混合物”,不是彻底的量子论。但其“定态”“跃迁”“能级”却是后来量子力学的基本概念。2.量子力学量子力学体系是建立在物质波基础之上的。(1)物质波 1924年,法国青年物理学家德布罗意(Louis de Broglie,1892-1987)在爱因斯坦光的波粒二象性的启发下,提出了实物粒子的波动性假设。他在博士论文中写道:“在光的情况中,我们不得已同时引入微粒和周期性的思想。另一方面,在原子中确定电子的稳态运动时引入了整数。迄今为止,物理学中涉及整数的现象只有干涉和振动的简正模式。这个事实使我想到,电子也不能看成简单的微粒,必须同时赋予它的周期性”。他基于这种思想并通过相对论的考虑,把光子动量推广到实物粒子,得出实物粒子波长和动量的关系λ=h/p。同时指出,通过电子在晶体上的衍射,应当看到这种假定的波。1927年,美国科学家戴维逊(Clinton Joseph Davison,1881-1958)和革末(Laster Helbert Germer,1896-1971)在镍单晶样品上实现了电子衍射,英国的G·P汤姆孙(J·J汤姆孙的儿子,George Paget Thomson,1892-1975))通过多晶薄膜实现了电子衍射。1932年,德国的鲁斯卡发明了第一台透射电子显微镜。电子显微镜至少可放大10万倍以上,比光学显微镜分辨本领一般大几千倍,这是因为电子波长比光波长小几个数量级,波长越短,分辨率越高。1929年,德布罗意因物质波理论获得诺贝尔物理学奖。戴维逊和G·P汤姆孙因验证电子波而共同分享1937年诺贝尔物理学奖。鲁斯卡于1986年因发明电镜获得诺贝尔奖。物质波还从分子束实验和中子衍射实验得到了验证(中子衍射已经成为探测物质结构的工具),这使得人们确信了波粒二象性是物质(包括实物和场)的普遍属性。德布罗意(2)量子力学理论体系量子力学是研究原子、分子、凝聚态以及原子核和基本粒子的基本理论,它和相对论并称是20世纪物理学史上的最大事件。它的建立是基于德布罗意物质波的假设。德国的海森伯(Werner Karl Heisenberg,1901-1976)和薛定谔(Erwin Schrodinger,1887-1961)分别以不同角度、不同思路建立了量子力学理论。海森伯以不连续粒子为基本概念,采用代数工具, 建立了矩阵力学。1925年,他在《论量子力学》一文中对矩阵力学作了严密的表述。1926年,薛定谔以“连续”的波为概念,采用微分方程,建立了波动力学。尽管两种力学在外观上很不同,但实质都是关于微观运动的理论。薛定谔还论证了两种力学的等价性。波动力学和矩阵力学统称为量子力学。由于人们对薛定谔波动力学所用的数学方法比较熟悉和易掌握,因此薛定谔波动力学被认为是量子力学的一般适用形式。英国的狄拉克(Paul Adrien Maurice Dirac,1902-1984)在1925年读到海森伯的论文后,又用算符形式重新表达了量子力学,表述形式优美而简练,而且更普遍适用。1928年,狄拉克又成功地将相对论和量子力学统一起来,建立了电子的相对论性运动方程即狄拉克方程,为相对论量子力学奠定了基础。该方程很自然地解释了电子的自旋,并预言了正负电子对的产生与湮没。海森伯因创立量子力学获得1932年诺贝尔物理学奖。薛定谔和狄拉克因建立原子理论新形式获得1933年诺贝尔物理学奖。1925年,泡利不相容原理、电子自旋是矩阵力学之外的另外两大物理学发现。泡利(Wolfgang Pauli,1900-1958)在矩阵力学建立前就提出了不相容原理即一个完全确定的量子态中至多只能有一个电子。他同时指出,确定电子态需要三个量子数(分别决定能量、角动量及角动量取向)之外,还需要第四个量子数(泡利因发现不相容原理而获得1945年诺贝尔物理学奖)。此前,玻尔为了说明元素周期表,提出了原子“组建原理”(能量最小原理)即原子中的一个电子轨道只可容纳两个电子且电子从低能轨道向高能轨道填充。泡利和玻尔的思想促使荷兰青年物理学家乌伦贝克(George E.Uhlenbeck,1900-1988)和古兹密特(Samuel A.Goudsmit,1902-1978)提出电子自旋的假设,第四个量子数即电子自旋量子数(取1/2,自旋取向量子数取+、-1/2),从而使长期得不到解释的光谱精细结构、斯特恩-盖拉赫实验等问题迎刃而解。两年后,电子自旋被纳入了量子力学体系,以后自旋成了微观物理学中的极为重要的概念。1925-1928的几年里,量子力学的宏伟大厦宣告落成。薛定谔(3)量子力学学派之争薛定谔波动方程中的波函数ψ究竟代表什么?玻恩(M.Born,1882-1970)于1926年提出了其概率诠释:ψ是几率幅,ψ的绝对值的平方是电子(或其他粒子)的几率密度,ψ的位相是干涉现象的根源。玻恩因此获得1954年诺贝尔物理学奖。海森伯在1927年导出了不确定关系,表明不能同时准确地测定微观粒子的坐标和动量。因此在微观领域,人们必须放弃力学意义上的因果律和决定论,而应把几率看成是本质的东西。微观客体的波动性和粒子性两种图象既相互排斥(不会在同一测量中同时出现),又必须同时用于微观客体统一性的描述,因而又是互补的。这样,量子力学实质上是一个统计性理论。波函数统计解释、不确定关系、互补性概念是以玻尔(包括海森伯、玻恩等)为首的哥本哈根学派的主要观点。哥本哈根学派的观点引起了爱因斯坦、薛定谔、德布罗意等物理学家的质疑。爱因斯坦对量子力学的几率解释和不确定关系很不满意。他表示了自己对“完全因果性”的信念:“上帝不掷骰子”、“你相信掷骰子的上帝,我却相信客观存在的世界中的完备定律和秩序”、“要放弃完全的因果性,我会很难过”。他认为,单个粒子的运动状态必须是决定性的,不能是统计性的,量子力学波函数只能描述多粒子组成的体系(系综),而不能准确地描述单个体系(如粒子),一个完备的理论应当能描述物理实在(包括单个体系)的每个要素的性质,所以不能认为量子力学理论是完备的。玻尔则认为,任何量子力学测量结果的报道给我们的不是关于客体的状态,而是关于这个客体浸没在其中的整个实验场合,这种整体性特点保证了量子力学描述的完备性。爱因斯坦承认统计性量子论是把二像性以令人满意的方式统一起来的理论,但他坚信因果律和决定论。薛定谔认为,玻恩的解释是对他的理论的误解,电子象跳蚤一样跳来跳去令人毛骨悚然。以玻尔为代表和以爱因斯坦为代表的两个学派之间争论的中心是关于科学规律在本质上究竟是因果性还是概率性的问题。围绕对量子力学的理解,双方展开了长时间的争论,许多物理学家和哲学家都卷入了这场论战。目前这种争论仍在继续,未有最后结论。总之,在20世纪初期,物理学处于新旧交替时期。这并非旧的经典物理学完全被新的物理学所取代,而是指物理学在原有基础上得到扩展即从低速宏观领域扩展到高速微观领域。对低速宏观领域,经典物理学仍然有效。在一定条件下,新理论将过渡到旧的经典理论,经典理论被新理论所包容。正如庞加莱所说:“在新力学中还可以找到旧力学”。四、 20世纪物理学的飞速发展量子力学和相对论的建立、应用促进了物理学的快速发展,同时经典物理学也焕发了青春。20世纪随着物理学的发展,从物理学中不断分化出名目繁多的新的分支学科如原子分子物理、核物理和粒子物理、凝聚态物理、低温物理、激光物理、非线性物理、计算物理、电子物理、无线电物理、等离子物理、半导体物理等。物理学与其他自然科学和技术科学的结合又形成了许多边缘学科如天体物理、地球物理、化学物理、生物物理、金属物理、材料物理、大气物理、海洋物理、信息物理、量子化学、量子生物学、分子生物学等,冠以“物理”类头衔的学科越来越多。20世纪涌现出来的高科技如信息科学、材料科学、核能技术、空间技术、军事科学技术都渊源于物理学基础理论。现代物理学已在微观、宏观、复杂系统乃至生命系统,把人类对自然界的认识引向了前所未有的高度。可以说,是物理学创造出了20世纪的物质文明,而物质技术的高度发达也必将推动物理学的迅速发展。20世纪,在物理学各个研究领域都有接连不断的激动人心的新发现和新成就。人们已在物质世界的各个层次(大到宇宙,小到基本粒子)展开了大规模的深入的研究。在微观领域,自1897年汤姆逊发现电子(使人们认识到亚原子层次)、1914年卢瑟福发现质子以后,1932年,英国的查德威克(James Chadwick,1891-1974)又发现了中子,多种原子核结构模型随之提出。还有许多核物理现象的各种发现,逐渐形成了原子核物理理论。1932年,美国的安德森(C.D.Anderson,1905-1991)发现了正电子,证实了狄拉克的预言。正电子的发现是人类认识反粒子的开端。20世纪50年代后,又发现了更多的反粒子。到目前为止,已发现宇宙中物质基本粒子达数百种。众多粒子的发现,使基本粒子的基本性受到怀疑。1964年,盖尔曼(M.Gell-Mann,1929-)提出了夸克是构成核子的更基本的粒子。在宇观领域,对宇宙的探索逐渐形成了宇宙演化的标准模型—大爆炸宇宙模型,解释了许多可观测的事实。该模型的基本观点是:宇宙起源于一次最初事件,那时温度极高、密度极大,既没有原子和分子,更没有星系和恒星;随着宇宙不断膨胀,温度下降,发生一系列相变,进而形成万物。粒子物理学家用大统一、超大统一理论描述温度极高的早期宇宙状态。这样,物理学中研究最大对象的宇宙学和研究最小对象的粒子物理学便紧密地联结在一起了。此外,凝聚态物理(研究大量分子、原子或离子聚集而成的固态和液态物质—凝聚态物质的物理性质、微观结构、粒子运动形态及相互关系的学科)是当今物理学中发展最快、规模庞大、应用最广、内容最丰富的一个重要学科分支。其中凝聚态结构理论、超导理论、导电理论、磁学理论、表面物理、固体发光、液态物理及低维物理的研究成果最为引人注目。另一个学科分支—非线性物理包括混沌、分形、耗散结构等理论也已渗透到数学、天文学、生物学、生命科学、气象科学、环境科学等众多领域。各个物理学学科分支的研究都十分活跃,而且在技术上获得了广泛的应用。当代物理学研究日益呈现出综合性、深入性、复杂性、交叉性、创新性和可应用性等特点。在新成就、新学科层出不穷的同时,也出现了许多新的物理学重大难题。在这些难题中,世界著名的理论物理学家李政道先生首推四个:第一,目前的物理理论都是对称的,而实验却越来越多地发现不对称;第二,夸克(构成基本粒子—强子的更基本的粒子,带有分数电荷)不能单独存在,六种夸克都不能自由行动;第三,类星体的巨大能源是怎样产生的;第四,宇宙中90%以上的物质是我们看不见的暗物质,这些暗物质是什么,不清楚。还有许多困绕物理学家的难题,如受控核聚变、室温超导、引力波与引力量子化、相互作用的大统一等。这些难题预示着一些新的重大突破,一旦解决,整个世界将再度焕然一新。以研究物质结构和运动的基本规律为目标的物理学将始终处于整个自然科学发展的前沿,物理学还将继续应用到其他自然科学。自然界无穷的奥妙等待着人们去探索,未来物理学的发展将永无止境。
物理知识系列讲座(二)——从自然哲学到现代物理学3——经典物理学体系的建立文艺复兴运动和科学革命使人的思想得到了解放、激发了人们对科学的探索热情,资本主义的发展为科学研究提供了物质基础。在此历史环境下,诞生了近代自然科学。牛顿力学的建立,完成了人类历史上第一次自然科学大统一,标志着经典物理学理论体系正在形成。到了19世纪末,经典物理学大厦已经落成。经典物理学理论有三大支柱即牛顿的经典力学、热力学与统计物理和经典电磁学理论(包括光学)。一、 经典力学体系伊萨克·牛顿(Isaac Newton,1642-1727),一个揭示自然奥秘的科学天才,英国杰出的物理学家和数学家。牛顿概括了前人包括伽利略、笛卡儿、开普勒、惠更斯、胡克等人的研究成果,创造性地将天体运动和地面物体的运动和谐地统一起来并形成了严密的科学体系,成功地创建了经典力学,发现了自然界深刻的运动规律。牛顿1.伽利略—近代力学的奠基人伽利略(Galileo Galilei,1564-1642)被科学界誉为近代力学的奠基人。伽利略的两部著作《关于托勒密和哥白尼两大世界体系的对话》和《关于力学和局部运动两门新学科的谈话和数学证明》(简称《两门新学科》,两门新学科指材料力学和运动学),为力学的发展打下了思想基础。在力学研究中,伽利略既涉及到静力学,也深入到运动学和动力学。他研究过物体的重心和平衡,研究过材料强度,利用浮力定律制作过静力学天平,等等。然而更重要的是运动学和动力学的研究成就,他发现了摆的等时性,研究了自由落体运动和抛体运动规律,研究过物体的惯性,区分了速度和加速度概念。伽利略关于物体的运动,亚里士多德曾把运动分为强迫运动和自然运动,认为落体运动的速度与重量成正比,力是使物体维持运动的原因,等等。伽利略认为不能把运动分为自然运动和强迫运动,应当根据运动的基本特征即速度进行分类,由此提出了匀速运动和变速运动的分类方法。他首先定义了匀速运动是指任何相等的时间间隔内通过相等的距离,进而给出了瞬时速度的概念即物体在给定时刻的速度,也就是从该时刻起做匀速运动所具有的速度。伽利略从落体运动的研究出发来研究变速运动,并假定落体运动是匀加速运动。他对匀加速运动给出了这样定义,若一物体从静止出发,并且在相等的时间间隔内获得相等的速度增量,则称之为匀加速运动。自由落体运动是否是匀加速运动?他认为要通过实验来检验。但要直接测量落体的速度增量与下落时间间隔的正比关系在当时是非常困难的。于是他利用数学图解方法得出物体从静止开始做匀加速运动通过的距离与时间的平方成正比即s/t2=常数,只要测出s与t即可。对自由落体运动,要准确测量s与t的关系也是不容易的。于是,他设计了著名的斜面实验,因为斜面上的运动慢得多,便于测量。他通过不同倾角的斜面实验,发现了前述平方正比关系。斜面实验的结论可以推广到竖直的自由落体运动,因为斜面坡度达到90度的极限情况就是自由落体运动。由此得出,物体自由下落的距离一定与时间的平方成正比,自由落体运动就是匀加速运动,从同一高度自由下落的物体,不论其重量如何,必然同时落地。他由斜面运动提出了加速度概念,而且容易得出斜面上的加速度与自由落体加速度之间的关系。传说伽利略曾经在比萨斜塔上做过实验,用以批驳亚里士多德的落体速度与重量成正比的说法,证实了落体加速度与物体重量无关的结论。有人说,他用大小相同而重量不同的的铁球和木球同时放下,观众看到两球同时落地,但历史考证对该传说存疑。伽利略在他的著作中所形成的惯性思想,为后来牛顿定律的建立和惯性概念的引入开辟了道路。他曾设计了一个实验—斜面对接的理想实验。如图1-3-1所示,一个光滑的小硬球从光滑斜面的某一高度下落到底部再沿对接的斜面上升将达到同意一水平高度。对接斜面越平缓,上升到原高度的时间则越长。当对接斜面过渡到坡度为零的水平面时,伽利略得出结论说,小球将以恒的定速度(匀速)永远运动下去。这就是伽利略关于惯性的思想。在谈到小球从水平桌面的边缘下落时,他指出小球将在水平方向的匀速运动上增加一个向下的匀加速运动,并认为重力是这个加速运动的原因。从而把力的作用同运动状态的变化联系起来了,形成了动力学研究的思想。笛卡儿则弥补了伽利略惯性思想的不足,比较完整地表述了惯性原理。他指出,除非物体受到外因的作用,物体将永远保持静止或运动状态,惯性运动的物体永远不会使自己趋向曲线运动。笛卡儿的表述对对牛顿的综合工作有深远的影响。图1-3-1 斜面对接理想实验伽利略研究了抛体运动,把抛体运动看成是物体在水平方向的匀速运动和竖直方向的匀加速运动的合成,而且两种运动互不影响,这是关于运动叠加或合成的原理。他还推出了抛体运动轨迹,给出了抛射角为45度时射程最远。他在批驳反对地动说的一些论据(如人感觉不到地的运动、如果地球转动高处落下的石头应当偏西等)时,用运动合成的观点论述了运动的相对性:在一个封闭的做匀速运动的平稳的船舱里,由于一切物体都参与了船的匀速运动,因此各物体的相对运动关系保持不变。从桅杆上掉下的物体仍然会落到桅杆脚下,不会因船的运动而落到桅杆后面,人跳向船尾不会比跳向船头来得远,人们感觉不到船在运动。这就是我们今日所称的力学相对性原理或伽利略相对性原理。这个原理的发现是人类科学认识史上的一个重大飞跃。2.碰撞的研究及“活力”在力学体系形成过程中,碰撞是一个重要研究课题。最早建立碰撞理论的是笛卡儿(Rene Descartes,1596-1650)。他在《哲学原理》一书中肯定了运动量就是物质的量和速度的乘积,只是当时还没有建立“质量”的概念,也就无法写出动量的表达式。他还总结了7条碰撞规律,但由于缺乏对动量矢量性的了解,7条规律只有两条正确。这两条规律描述了动量传递的思想。荷兰物理学家、数学家惠更斯(Christian Huygens,1629-1695)从1652年开始研究弹性物体的碰撞,研究结果收集在《论碰撞作用下物体的运动》的论文中。在研究过程中,惠更斯发现了动量守恒和弹性碰撞机械能守恒的规律,并且明确地指出了动量的方向性。他写道:“两个物体所具有的运动量在碰撞中可以增加或减少,但它们的量值在同一个方向的总和保持不变,如果减去反方向的运动量的话。”“在两个物体的碰撞中,大的程度与速度的平方乘积的总和保持不变”,“大的程度”代表惯性大小即后来的质量概念,这里第一次提到mv2这个量。马略特(Edme Mariotte,1620-1684)在1673年创立了一种用单摆做碰撞实验的方法,他用两根一样长的细绳悬挂两个小球,根据两球在碰撞前后下落和上升的高度可以测出碰撞前后的瞬时速度。碰撞的研究为建立作用力和反作用力定律准备了一定的条件。17-18世纪,“力”的概念还不完全清晰,人们从不同的意义上使用这个概念描述了力的各种效应,从而引起了关于“运动量”或“力”的量度的一场争论。笛卡儿学派主张以mv量度运动量或力。而德国数学家、物理学家莱布尼兹(G.W.F.von Leibnitz,1646-1716)则引进“活力”的概念,主张用mv2(后来变成1/2 mv2即动能)对与运动量或力进行量度,认为宇宙中“活力守恒”,且发现力和路程的乘积(实际上是功)与活力成正比。“活力守恒”已非常接近机械能守恒原理。以后的研究表明,动量和动能是从不同的角度衡量机械运动量的两个重要的物理量。3.万有引力定律的发现万有引力定律的发现是牛顿从运动现象研究自然力的一个辉煌的范例。开普勒所描述的行星运动的三个定律使人们进一步研究行星的运动学和动力学问题成为了可能,为万有引力定律的发现打下了基础。牛顿根据向心力公式和开普勒定律得出行星受中心力作用、该中心力是吸引力、该吸引力与半径的平方成反比。还得出“这些指向物体的力应与物体的性质和量有关”, 从而把质量引进到万有引力定律。还有许多人为万有定律作出过贡献。笛卡儿在1644年提出的“旋涡”假说是牛顿以前最有影响的引力理论,他认为宇宙空间充满了“以太”—一种稀薄的不可见的流质。以太围绕天体形成旋涡式运动,带动天体(如太阳)周围的物体(如行星)转动,旋涡压力卷吸着周围物体趋向中心物体,从而表现出引力现象。1645年,法国天文学家布里阿德(L.Bulliadus,1605-1694)第一次提出“从太阳发出的力和离太阳距离的平方成反比而减少”的假设。1666年,比萨大学教授玻列利(Alphonse Borelli,1608-1678)提出,引力是距离的幂的某种函数,设想行星受到一个趋向太阳的向心力。惠更斯在他的著作《摆钟》中导出了单摆的周期公式,摆钟的发明和使用显示了重量和质量的差异,在不同的地方要调整钟摆的摆长,走时才准确,因为同一物体在地球表面不同的地方重力不同。英国的胡克(Robert Hooke,1635-1703)曾经觉察到引力和重力有同样的本质并于1680年初在给牛顿的信中提出了引力反比于距离的平方的猜测。哈雷(Edmund Halley,1656-1742)和伦恩(Christopher Wren,1632-1723)在1679年按圆形轨道和开普勒定律,导出了行星的引力与其到太阳的距离的平方成反比,但没能证明行星在椭圆轨道上也是如此。哈雷后来还根据牛顿的理论计算出1682年出现的大彗星(后来称哈雷彗星)的轨道是一个拉得很长的椭圆且回归周期约为76年。牛顿在1684年关于《论运动》的演讲中,明确叙述了向心力定律,证明了椭圆轨道运动下的平方反比关系,不久又在另一篇文章中定义了质量的概念并探讨了引力与质量的关系,从而完善了万有引力定律的发现。苹果落地引发牛顿对引力的思索的故事很有意思。有一次他独自坐在花园里,忽然看到一个苹果从树上掉下来,他吃了一惊,便沉浸在对引力的思考中。他想这种力的作用范围可能要比通常设想的大得多,比如说一直延伸到月亮,很可能这个力就是使月亮维持轨道运动的原因。这个故事说明牛顿已觉察到天体运动与地球上物体运动的统一性。不论故事的真实性如何,然而苹果已成了万有引力的象征。4.牛顿的《自然哲学的数学原理》—物理学史上第一次大综合1687年牛顿出版了《自然哲学的数学原理》(简称《原理》)这部划时代的科学巨著,从而奠定了他在世界科学史上的崇高地位。《原理》创造性地综合了前人和他本人的研究成果,总结了动力学原理并宣布了万有引力定律,缔造了天上和地上统一和以三大运动定律为基础的力学体系。牛顿曾经说过:“如果我看得更远那是因为站在巨人的肩膀上。”这里的巨人指伽利略、开普勒、哥白尼、胡克和笛卡儿等,实际上他的综合工作是基于中世纪以来科学研究的累累成果。《原理》共分两大部分。第一部分为导论,给出了质量、运动量、力、惯性等定义,提出了绝对时间、绝对空间、绝对运动和绝对静止的概念,写出了著名的三个运动定律以及矢量的合成分解法则、运动叠加原理、动量守恒原理、伽利略相对性原理。第一定律即惯性定律,继承了伽利略的惯性思想和笛卡儿关于惯性的说法。第二定律的形式是Δ(mv)=fΔt而不是现在的f=ma,前者对速度很高的相对论情形仍然成立,好象牛顿有预见似的。第三定律是作用力和反作用力定律,与对碰撞的研究有某些关系。这一部分是前人工作的系统化,是牛顿力学的概念基础。第二部分的第一篇应用前面的基本定律研究了万有引力定律和有心力问题,给出了点状物体和均匀球体的引力公式:f=Gm1m2/r2。G是引力恒量。第二篇指出了笛卡儿的旋涡学说违背了开普勒定律。第三篇讨论了“宇宙系统”,用万有引力解释了当时所知道的天体的一切运动,宣布了宇宙中任何物体之间普遍存在着一种万有引力。也就是说,支配天体运动的力和苹果的重力是同一种力。牛顿还用一个理想实验,直观说明了轨道运动的力与重力是同一种力:在高山上水平射出一炮弹,速度不够时,重力使炮弹落在地上。当速度足够大时,炮弹就绕地球运动而不掉下来。牛顿定律在原则上可以解决所有力学问题,但对多质点系统和约束较多的情形,直接应用牛顿定律很烦琐,又逐渐发展起了动量、动量矩、机械能三个守恒定律。18世纪,力学家和数学家又致力于寻找一种比牛顿定律更广泛、更简便的普遍力学原理,形成了分析力学。牛顿力学与天文学结合又形成了天体力学,真正的天体力学是在爱因斯坦之后。牛顿力学的另一发展方向是推广到连续介质形成了弹性力学、流体力学、材料力学、空气动力学和变质量体力学等,它们是解决许多工程问题的基础。牛顿首次大量地用数学方法系统地整理和阐述物理理论以及在观察、实验的基础上归纳出自然规律的方法,为以后各种物理理论体系的建立树立了典范。但牛顿的绝对时空观认为时间和空间与物质的运动无关则是一种机械的和形而上学的自然观,因而具有很大的局限性。二、 经典光学理论体系光学既是物理学中最古老的一门基础学科,也是当今科学领域中最活跃的学科之一。光学的发展大致可以分为五个时期即萌芽时期(即15世纪以前古代对光学的研究,在本章第一节已介绍过)、几何光学时期(约16-18世纪)、波动光学时期(约19世纪)、量子光学时期(20世纪初)和现代光学时期(20世纪60年代起)。此处着重介绍经典光学包括几何光学和波动光学的发展历史。1.几何光学光学真正成为一门科学,应从反射定律和折射定律的建立算起,这两个定律是几何光学的基础。古希腊学者托勒密最早研究折射现象,阿拉伯人也做过折射实验,但都没有找到折射定律的表达式。17世纪初,人们发明了望远镜和显微镜,伽利略还用自己制作的望远镜发现了木星的卫星。新式光学仪器对观测技术的改进,激发了开普勒对光学的研究兴趣。他汇集了前人的光学知识,于1611年发表了《折光学》一书,发现当光以小角度入射时入射角与折射角近似地成正比,还发现了全反射现象,并设计了几种天文望远镜。折射定律的精确公式(sini/sinγ=常数)则是荷兰的斯涅耳(Willibrod Snell,1591-1626)和法国的笛卡儿提出的。法国的费马(Pierre Fermat,1601-1665)在1657年首先提出光在介质中传播的路程取极值的原理(费马原理)并推出光的反射定律和折射定律。从托勒密开始,经历了1500年的时间终于得到了严格的折射定律。折射定律连同反射定律和光的直线传播原理一起,构成了几何光学的理论基础。2.波动光学17世纪中叶,人们发现了与光的直线传播原理不完全符合的新的光学现象。意大利的格里马第(Francesco Maria Grimaldi,1618-1663)首先观察到光的衍射现象。他注意到,如果将一束日光引入暗室,光路上的直竿投出的影子并不是清晰的,而有一个模糊的边缘,在影子的边缘还呈现2-3个彩色条带。他用不透明板上的圆孔代替直竿,在屏幕上出现了比光直线传播时稍大一些的圆形光斑。这些现象说明光线能绕过障碍而偏离直线传播,他将其称为“衍射”。后来,胡克也观察到衍射现象,并且和波义耳(Robert Boyle,1627-1691)独立地研究了薄膜产生的彩色干涉条纹,所有这些都是波动光学的萌芽。17世纪下半叶,牛顿和惠更斯等把光的研究引向了进一步发展的道路。在牛顿以前,对光的颜色的解释是困难的,人们大都承袭亚里士多德的观点:颜色是一种主观感觉,一切颜色皆由光明与黑暗、白与黑按比例混合而成。1672年,牛顿发现白光通过棱镜时,会在光屏上按一定次序排列成彩色光带(光谱)。于是他认为白光是由各种色光复合而成的。牛顿的白光实验,使人们对颜色的认识从主观视觉的印象上升到了一个科学高度。牛顿还仔细观察了白光在空气薄膜上干涉产生的彩色条纹(牛顿环)(实际上是胡克最早发现牛顿环)。1704年,牛顿出版了《光学》一书,根据光的直线传播性质提出了光的微粒学说。他认为,光是微粒流,这些微粒从光源飞出,在真空和均匀媒质中由于惯性而做匀速直线运动,用此观点解释了光的直线传播、光的反射和光的折射。笛卡儿最早提出光是机械弹性微粒的观点,用以解释光的反射(粒子反弹)和折射。牛顿和笛卡儿主张光的微粒说,但并未完全排斥波动思想。笛卡儿也将以太的思想引入到光学中,认为光是一种压力,在完全弹性的充满一切空间的媒质(以太)中传播,传播的速度无限大。牛顿虽然认为光的本质是微粒,但它们在以太中运动时能激发以太的振动。他在研究牛顿环时,认识到了光的周期性,用微粒说和以太振动结合的思想解释了干涉条纹。惠更斯、胡克和欧拉(Leonhard Euler,1707-1783)则坚决主张光的波动说。胡克认为光是一种振动,根据云母片的薄膜干涉条纹得出光是类似于水波的某种快速脉冲的结论。惠更斯发展了胡克的思想,对微粒说提出了批评。他认为光是发光体中微小粒子的振动,是在弥漫于宇宙空间的介质“以太”中的一种波的传播过程,这种传播速度非常大但又有限,传播方式象声音的传播一样而不是象穿过空气的子弹那样的物质迁移。不过他把光的波动看成是以太纵波。他用子波和波阵面的概念引进了著名的惠更斯原理,成功地解释了反射和折射定律。但惠更斯没有把波动过程的特性给予足够的说明,没有指出光的周期性和波长,没有认识到波的叠加性,没能解释光的干涉和衍射,没能解释光的偏振现象,而且以太这种物质也是值得怀疑的。由于牛顿的权威,微粒说在光学中占统治地位达一个世纪之久。到了19世纪初叶,英国的托马斯·杨(Thomas Young,1773-1829)和法国的菲涅耳(Augustim Jean Fresnel,1788-1827)的实验和理论工作为光的波动理论奠定了坚实的基础,至此人们开始普遍接受光的波动说。1801年,杨做了著名的双缝(孔)实验,用干涉原理解释了双缝干涉现象并说明了牛顿环的成因和薄膜的彩色,第一次测定了7种颜色的光波长。1815年,菲涅耳将干涉原理和惠更斯原理结合,形成了惠更斯-菲涅耳原理,用该原理不仅圆满地解释了光在均匀的各向同性介质中的直线传播,而且还解释了光的衍射现象。光的衍射还说明几何光学是波动光学在一定条件下的近似。1808年,马吕斯(Etienne Louis Malus,1775-1812)发现光在反射时的偏振现象。1816年,菲涅耳和阿拉果(D.F.J.Arago,1786-1853)又研究了偏振光的干涉。杨用光的横波假设说明了光的偏振现象。波动说认为光在光密媒质中传播速度较慢,微粒说的结论却相反。1831年,阿拉果设计了一个直接测量比较光在空气、玻璃和水中的传播速度的实验(由于他失明未能完成),后傅科(Jean Bernard Leon Foucault,1819-1830)改进了他的设计,完成了这一实验,直接否定了微粒说。但此时,人们把光仍然看成是“以太”中的机械弹性波。至于以太是何种物质,却难自圆其说。1845年,英国的法拉第(M.Faraday1791-1867)发现了光的振动面在强磁场中发生旋转即磁致旋光效应。1856年韦伯(Wilhelm Weber,1804-1891)和柯尔劳斯(R.Kohlrausch,1809-1858)从电学实验结果中发现电磁单位与静电单位的比值等于光在真空中的传播速度(3×108m/s)。这一惊人的发现,深刻地反映了电磁现象和光现象之间的联系。1865年,麦克斯韦提出了一套完整的电磁场方程并由此推出了电磁场传播的波动方程,电磁场以横波形式在空间传播,求出了电磁波的速度为光速。1868年,麦克斯韦又发表了《关于光的电磁理论》的论文,明确地把光概括到了电磁理论中,从而将电、磁、光统一起来。 1888年赫兹(Heinrich Hertz,1857-1894)由实验测定了电磁波的速度,发现它正好等于光速。至此完全确立了光的电磁说,使人们在认识光的本性方面迈出了一大步。19世纪末到20世纪初,人们对光学的研究已经深入到光的发射、光与物质的相互作用的微观机制中,光的电磁波理论在解释光和物质相互作用的某些现象时遇到了困难,例如黑体热辐射实验、光电效应实验等。1900年普朗克(Max K.E.L.Planck,1858-1947)提出了能量子概念成功地解释了黑体辐射问题。 1905年,爱因斯坦(1879-1955)提出了光子假说,圆满地解释了光电效应。光子理论为后来许多实验如康普顿效应所证实,从而形成了量子光学。但要注意的是,光子不同于牛顿的光的微粒说中的粒子,这里的光子是和光的频率(波动特性)联系在一起的,具有波粒二象性。从20世纪60年代尤其是激光问世以来,一度沉寂的光学又以空前的规模和速度向前发展,形成了现代光学。1960年出现首台红宝石激光器,中国也于1961年8月成功研制了第一台红宝石激光器。尔后,各种不同的激光器相继问世。激光与普通光源的发光机制和性质完全不同,其用途十分广泛。随着新的技术的出现,新的光学理论也在不断发展,已经逐步形成了大量的分支学科或边缘学科。现代光学与其他科学和技术的结合,正在成为造福于人类的强有力的武器。三、 经典热力学与统计物理学体系热学是研究热现象和热运动的理论,它包括宏观的热力学理论和微观的统计物理理论。从远古时代到18世纪,由于生产发展缓慢,关于热的知识积累少,热学还不能成为一门系统的科学建立起来。蒸汽机的发明及其广泛应用促使人们对各种物质热性质和热运动规律作深入的研究。18世纪初,系统的计温学和量热学开始确立,人们对热的研究便走上了实验科学的道路,热学成了物理学中新发展起来的一门分支学科。1.早期的热学研究关于热的本质,古人曾经有一些初浅的看法。中国古代的五行学说把火当作构成万物的一种基本要素,古希腊的四元素说也把火视为一种基本元素。这些学说都认为火是自然界的一个独立的基本要素。另一种观点则认为火是物质运动的一种表现形式。中国古代的元气说就认为热(火)是元气聚散变化的表现。古希腊学者柏拉图(Plato,约前427-347)也认为火和热是摩檫和碰撞引起的。古代对热的不同看法只停留在思辩和猜测的水平上,没有科学的证明。17世纪以后,热的本质问题又引起了人们的兴趣。当时存在着两种不同的观点,一种是从物质内部的运动解释热现象,另一种是用一种意想的特殊物质即热质来解释热现象,而且热质说一度占了上风。有不少人根据摩檫生热现象,认为热是一种特殊的运动。弗兰西斯·培根在大量的经验事实基础上断言热的实质是物体内部微粒的运动,这种看法影响了许多科学家。玻义耳(Robert Boyle,1627-1691)指出热是“物体各部分发生的强烈而杂乱的运动”。笛卡儿把热看作是物质粒子的一种旋转运动。胡克认为热“是物体各个部分的非常活跃和极其猛烈的运动”。牛顿也指出,热不是一种物质而是组成物体的微粒的机械运动。18世纪,俄国的罗蒙诺索夫(Lomonosov,Mikhil Vasilievich,1711-1765)明确提出了热的充分的根源在于运动、热是物质内部分子运动的表现以及气体分子运动是无规则的重要思想。上述热的运动说虽然正确,但尚缺乏足够的实验依据,因此还不能成为人们普遍接受的科学理论。在此期间,随着古希腊原子论思想的复兴,热是某种特殊的物质实体的观点也得到流传。法国科学家伽桑狄(Pierre Gassendi,1592-1655)认为运动着的原子是构成万物的原始的、不可再分的世界要素,热和冷是由特殊的热原子和冷原子引起的。这种观念把许多人引向了热质说。18世纪中叶以后,建立了计温学和量热学,但由于各种物理现象的相互联系还没有被揭示出来,还由于化学的进展以及形而上学思想的影响,多数物理学家以片面的观点看待事物,用热质来解释自然界的冷热变化。热质说者称热是由无重量的某种特殊物质组成的。在热质说指引下,热学也有一定进展。波尔哈夫在做混合物的实验时断言“热不能创造也不能消灭”,提出了混合时热量守恒的思想。英国化学家布莱克(Joseph Black,1728-1799)是热质说的主要倡导者。他在研究热传导时,提出了比热、热容量概念,得出了量热学基本公式Q=cmΔt,而且区分了温度和热量的概念即温度是“热的强度”、热量是“热的数量”,还发现了潜热。当时热质说之所以能占上风,是因为人们没有注意到热现象与其他物理现象之间的相互联系和转化的关系,而热质说却能很好地解释一些热现象如温度的变化是吸收和放出热质引起、热传导是热质的流动、摩檫或碰撞生热是热质被逼出来的缘故。18世纪末,热质说受到了严重的挑战。英国物理学家伦福德(Count Rumrord,即Benjamin Thompson,1753-1814)于1797年向皇家学会提交了《论摩檫激起的热源》的报告,叙述了他的机械功生热的发现,他观察到大炮镗孔时剧烈发热,浸在水中的炮筒使水温快速上升。根据分析,他认为热是物质运动的一种形式。1799年,英国化学家戴维利用钟表机件使放在真空容器里的两块冰摩檫融化成水,而水的比热比冰高,冰要加上一个绝对量的热才能变成水。他断言,热质是不存在的,热质守恒不成立,热是物体微粒的运动或振动。伦福德和戴维的正确观点为热质说的最终破灭提供了令人信服的论据,但热质说在当时并未因此而推翻。这个问题直到19世纪热力学第一定律建立后,才得到真正解决。2.能量守恒定律与热力学理论的建立能量守恒原理的建立是生产技术、哲学和自然科学长期发展的结果。在中国古代和古希腊,就已经提出运动不灭又不可创造的思想。在近代科学产生以来,对能量守恒原理的认识是从力学的研究开始的。伽利略的斜面实验和单摆研究以及惠更斯的完全弹性碰撞实验都涉及到能量守恒问题。17世纪笛卡儿明确提出了宇宙中运动不灭的思想。莱布尼兹首先提出“活力”(mv2、重量和高度的乘积)守恒原理。1807年,托马斯·杨提出用“能”代替“活力”。科里奥利(Gaspard Gustave Coriolis,1792-1843)于1829年提出用mv2/2代替 mv2 ,但仍然叫活力,法国的彭塞利(Jean Victor Poncelet,1788-1867)同年提出“功”的术语。以后经伯努利(D.Bernoulli,1700-1782)、欧拉(Leonhard Euler,1707-1783)、拉普拉斯(P.S.M Laplace,1749-1827)等人的工作,形成了势能的概念。到19世纪20年代,人们已弄清了功和机械能变化的量度关系。机械能守恒实际上是能量守恒在机械运动中的特殊情况。永动机不可能实现的历史教训,从反面提供了能量守恒原理的例证。很早以来,一些发明者企图创造一种理想机械,这种机械(第一类永动机)在不消耗任何燃料和动力的情况下不断地进行有效的工作。但各种设计巧妙的永动机最后都以失败告终。达·芬奇也曾设计过永动机,但他的结论是:永动机不可能实现。在能量守恒定律的发现过程中,蒸汽机的发明应用、热与机械功之间的转化研究起到了直接和关键的作用。17世纪末期,法国人巴本(Denis Papin,1647-1714)发明了第一台活塞式蒸汽机,尔后还出现了各种其他形式的蒸汽机。在众多蒸汽机的发明者和改进者中,瓦特(James Watt,1736-1819)最有名,他设计的蒸汽机效率最高。 18世纪中后期以蒸汽机的使用为主要标志的技术革命,使资本主义生产关系发生了重大转折,同时推进了自然科学尤其是热学的发展。蒸汽机的发明和利用为能量守恒与转化定律(热力学第一定律)的发现创造了最基本的物质基础。而提高热机效率的研究则导致了热力学第二定律的建立。19世纪初,蒸汽机在生产中所起的作用越来越大,但却缺乏对热转变为机械功的理论研究。法国工程师卡诺(Sadi Carnot,1796-1832)首先在理论上用热质说框架对热机运行过程进行了论证。他认为,热机在高低温热源之间做功,由热质下落所引起,好比水从高处落到低处作功一样。不过后来,他转向了热动说。对热机的理论探索导致了热力学的形成。瓦特蒸汽机的动力应用促使人们去深入探讨机械运动和热运动之间的相互转化,而在其他领域,各种运动形式之间的相互联系和转化,也相继被发现。从18世纪到19世纪上半叶,自然科学蓬勃发展,完成了一系列重大发现。如动物电、温差电及其逆效应、电流的热效应(焦耳楞次定律)、电流产生机械运动(法拉第“电磁旋转器”)、电流的磁效应、电磁感应(法拉第直流发电机)、电解、化学反应热、伏特化学电池、光振动面的磁旋转、紫外线的化学作用等等,还有古人已经发现了的摩檫生电、摩檫生热。这些发现日益显示出各种运动形式之间的普遍联系和相互转化,使人们逐渐形成了能量的概念并认识到各种运动形式是同一种能量的不同表现形式。能量守恒定律就是在对力、热、光、电、化学等各种运动形式相互联系的基础上建立起来的。到19世纪40年代,能量守恒定律已经完全确立。现在公认对能量守恒定律(热力学第一定律)的建立贡献最大的是迈尔(Robert Mayer,1814-1878)、焦耳(Janes Prescott Joule,1818-1889)和亥姆霍兹(H.Von Helmholtz,1821-1894)。迈尔在《论无机界的力》和《论热的机械当量》的论文中,提出了力(即能量)的不灭性和可转化原理,并初步计算了热功当量。焦耳从1837年起到1878年花了40年的时间,先后用不同的方法进行了400多次关于热功当量的实验,以精确的数据为能量守恒定律提供了无可置疑的实验事实。亥姆霍兹从多方面论证了能量守恒与转换定律。他认为,自然界的力(能量)是守恒的,所有的力都应和机械力具有相同的量纲并可还原为机械力。1847年,他在《论力的守恒》中充分论证了这一命题。亥姆霍兹曾经写道:“自然界作为整体来说,它蕴藏着一定数量的能量,既不会减少,也不会增加。因此,自然界中的能量是永恒的和不变的,就象物质的数量守恒一样。我把这种形式定义的普遍规律称为能量守恒定律”。焦耳热力学第一定律就是能量守恒与转换定律在涉及热现象过程中的具体体现。德国物理学家克劳修斯(R.E.Clausius,1822-1888)于1850年在热功当量结论和卡诺热机效率结论的基础上给出了热力学第一定律的数学表达式(dQ=dU+dW)。热力学第二定律(能量耗散定律)是关于热能与机械能(或其他形式能量)转化的一种特殊规律,基本内容是:涉及到热的过程是不可逆的,在实用上是寻求热机效率的最大可能性。这一定律是克劳修斯和英国物理学家开尔文(即汤姆逊)(Lord Kilvin,即Willian Thomson,1824-1907)各自独立建立的。他们重新分析了卡诺的工作,分别给出了关于热力学第二定律的说法。热力学第二定律的发现与热机效率的研究是分不开的。卡诺于1824年提出了在热机理论中有重要地位的卡诺定理,后来这一定理成了热力学第二定律的先导。他选取以两个等温过程和两个绝热过程组成的理想循环、气体工作在两个理想的温度不同的恒温热源之间的热机,提出“动力的量唯一地取决于热质在其间转移(‘降落’)的两物体的温度,与工作物质无关”的命题,经过逻辑推理证明了他的理想循环的效率最高。在能量守恒定律确定以后,卡诺关于热质“降落”做机械功的说法显然是错误的。卡诺由于热质观念的束缚,未能充分理解到自己工作中所包含的深刻思想。克劳修斯却从可逆卡诺循环中引出了新的物理概念—熵(系统对热的转化程度的测度),得出了热力学第二定律的数学式,并用熵的概念表述了热力学第二定律即自然界一切自发过程总是沿着熵不减少的方向进行的(熵增加原理)。热力学第一、第二定律构成了热力学的理论基础,在此基础上热力学形成了完整的理论体系并成为物理学的重要组成部分。1912年,德国的能斯脱(Walther Nernst,1864-1941)建立了热力学第三定律(绝对零度不可能达到)。该定律是研究温度趋于绝对零度时物质性质的热力学规律。值得一提的是,开尔文和克劳修斯把热力学第二定律推广到整个宇宙,得出了宇宙“热寂”的结论。克劳修斯把热力学的基本原理用简洁的语言表述为:“宇宙的能量是常数”“宇宙的熵趋于一个极大值”,因此,“宇宙越接近于熵为最大值的极限状态,它继续发生变化的机会也越减少,如果最后完全达到了这个状态,也就不会再出现进一步的变化,宇宙将处于死寂的永远状态”。以上就是众所周知的“热寂说”。“热寂说”把有限范围的孤立系统的规律任意推广到无限的开放的宇宙,是其错误的根源所在。3.分子运动论及统计物理学虽然热力学定律找到了热现象的一般规律,但对于热的本质究竟是什么,热是一种什么运动形式,并没有具体的回答。热质说衰落后,热的动力论取而代之。既然热动说认为热是组成物质的微粒的内部运动的表现,人们当然要深入到物体的内部从分子角度来解释宏观热现象的本质。19世纪中叶,热力学两个定律建立后,物理学界普遍认识到热和分子运动的联系,分子运动论得到很大的发展。克劳修斯、麦克斯韦(James Clerk Maxwell,1831-1879)、玻耳兹曼(Ludwig Boltzmann,1844-1906)是分子运动论的主要奠基者,他们对分子运动论进行了全面系统的研究。这些研究深入到物质内部,把唯象的热力学和分子运动结合起来,运用概率统计方法把系统的宏观状态参量描述为系统相应的微观量的统计平均值,从而由系统的微观运动状态预言系统热运动的宏观性质。克劳修斯在1857年第一次明确地引进了统计思想,提出了理想气体分子模型,正确地导出了玻义耳定律,得到了气体压强和分子平均平动动能成正比、分子的平动动能又与绝对温度成正比的认识,。在推导气体压强公式时,指出压强是大量分子对容器壁碰撞的统计平均效果。由于力学定律无法解释大量微观粒子的运动问题,要确定每个分子的碰撞过程和细节是不可能的,也是没有意义的,因而有必要引进统计平均概念以代替对单个分子运动的描述。克劳修斯的研究对麦克斯韦研究气体动理论产生了很大的影响。麦克斯韦得出了气体分子在碰撞后沿各个方向运动的概率相等的结论。他还指出,气体分子间的频繁碰撞并不使它们的速度趋于一致,速度大小范围可以从0到无穷大,而且在平衡态下有确定不变的规律性分布。他于1859年用概率方法得到了平衡态下气体分子速度和速率分布律。奥利地物理学家玻耳兹曼((Ludwig Boltzmann,1844-1906)在1868年到1871年间又把麦克斯韦速度分布律推广到有外力场作用的情况,得出了粒子按能量大小分布的规律即玻耳兹曼定律,且很好地说明了大气密度和压强随高度的变化。该定律是统计物理学的重要定律之一,而且在后来的物理学发展中占有重要地位。1887年,他给出了热力学第二定律的统计解释,把熵和热力学状态的几率W联系起来,得出了物理学中最重要的公式之一S=klnW(这个公式后来刻在了他的墓碑上),明确地说明了熵的统计意义,揭示热力学第二定律的实质。他指出,不可逆性由概率引起,一个孤立系统总是向概率最大的宏观态演化。以上工作为统计力学奠定了基础。吉布斯(Josah Willard Gibbs,1839-1903)大大改进和发展了麦克斯韦、玻耳兹曼的统计方法,于1902年出版了《统计力学基本原理》一书,这标志着平衡态经典统计力学的建立。吉布斯提出了系综的概念。系综代表大量性质相同的体系的集合,研究系综在相空间中的分布,求力学量的平均值,就是统计力学的基本任务,从而使热学上的很多与平衡态有关的问题获得了普遍解决。统计力学理论又使得热力学过程的不可逆性失去了绝对意义。它指出任何宏观平衡态必然伴随着永不停息的微小涨落。涨落现象在光的散射中容易观察到。1881年,英国物理学家瑞利(Lord Rayleigh,1842-1919)证明了分子密度的涨落引起分子散射,并用分子散射解释了天空呈蓝色的原因。 涨落还说明了布朗运动即布朗1827年发现的悬浮在液体中的超显微粒子持续的无规则运动。斯莫卢霍夫斯基(Marian von Smoluchowski,1872-1917)和爱因斯坦(Albert Einstein,1879-1955)提出和完成了关于布朗运动的统计理论。气体分子运动论、统计力学、涨落理论一起构成了统计物理学的三个组成部分。统计物理学使人们对物质的认识从宏观领域进入到了微观领域。20世纪,量子力学建立后,经典统计物理学经过改造又建立了量子统计物理学。量子统计物理学强有力地推动了对固体、液体和等离子体中各种物理性质的研究。20世纪50年代以后,非平衡态热力学和统计物理学得到了迅速发展。20世纪60年代以来,以比利时物理学家普利高津为代表所创造的关于非平衡系统自组织现象的理论,在物理学、化学、生物学、医学、生态演化、天体演化等领域内的应用取得了重大进展。但非平衡态理论还很不完善,有待于继续研究和发展。四、 经典电磁学理论体系从文艺复兴时期开始,电学和磁学进入了系统的实验研究,但两者是独立发展的。自奥斯特发现电流具有磁效应以后,电和磁便形成了一个统一的整体。麦克斯韦在库仑、奥斯特、毕奥、萨伐尔、安培、法拉第等人的工作基础之上,建立了完整体系的电磁学理论。1.电学和磁学的早期研究早在古代中国和古希腊,就有了摩檫起电、磁石吸铁、司南等历史记载。但对电、磁现象进行比较系统的研究,则是从16世纪以后才开始的。1600年,英国科学家吉尔伯特(William Gilbert,1540-1603)在他出版的《论磁、磁体和地球作为一个巨大磁体》一书中系统地总结了前人和自己的研究成果。他做了大量的揭示电和磁性质的实验,是用实验和理论相结合的方法探索自然的典范。吉尔伯特用天然磁石制成一个大石球,把小磁针放在磁石上面,发现小磁针与指南针在地球上的行为一样。由此,他设想地球是一个巨大的磁石,许多磁现象与这个巨大的磁石有关。他从实验中发现磁石对铁块吸引力与磁石大小成正比。他制作了第一个验电器以检验物体是否带电。他还发现了多种物质(除琥珀外,还有金刚石、蓝宝石、硫磺、树脂等)具有摩檫起电性质。1660年,德国的格里凯(Otto von Guericke,1602-1686)发明了用硫磺球产生大量电荷的摩檫起电机,1705年豪客斯比(F.Hauksbee,1666-1713)用玻璃球代替硫磺球做成摩檫起电机。1720年,格雷(Stephen Gray,1675-1736)研究了电的传导现象,发现了导体和绝缘体的区别,又发现了静电感应现象。1733年,杜菲((Charles Francois Du Fay,1698-1739)通过实验区分出两种电荷,并总结出同性相斥异性相吸的静电基本特性。克莱斯特(Ewald Georg von Kleist,1700-1738)于1745年发明的莱顿瓶提供了一种储存电的方法,为深入研究电现象提供了强有力的实验手段。美国伟大的科学家、政治家和美国独立之父富兰克林(Benjamin Franklin,1706-1790)在电学中作了许多重要工作,大大丰富了人类对电的认识。他发现了尖端放电,发明了避雷针。他利用风筝从雷云中收集的电荷给莱顿瓶充电而得到电火花,从而证明闪电是一种电现象,统一了天电和地电。他认为摩檫起电是电从一个物体向另一物体转移引起的,从而发现了电荷守恒原理。他第一个用数学上的正负表示两种电荷,还首创了导体、充电、放电等一直沿用至今的术语。至此,已经建立了静电力基本特性、电荷守恒和静电感应原理等电的初步认识,但还没有建立关于电的定量规律,电的知识还不能成为一门严密的科学。2.库仑定律的建立库仑定律是电磁学基本定律之一,它的发现使电磁学进入了定量的研究,是电磁学真正成为一门学科的开始。18世纪中叶,牛顿力学正当辉煌,人们对电力和磁力的认识作出了类似于万有引力的各种猜测。牛顿曾经证明过,如果万有引力服从平方反比定律,则均匀球壳内的物体应无作用。富兰克林在1755年做了一个对电力的规律有重要启示的银罐实验,他将空银灌带电,用细线吊一个小软木球放到灌里,发现木球并未受到电的作用,而且当木球接触到灌内壁后再取出来也不带电。英国电学家普列斯特利(J.Priestley,1733-1804)从富兰克林的实验结果中随即意识到“电的吸引遵从与万有引力相同的定律即按距离的平方的反比而变化”。在此之前,德国的埃皮努斯(F.U.T.Apinus,1724-1802)和瑞士的D·伯努利(D.Bernoulli,1700-1782)也有过电力平方反比关系的猜测。上述关于电力规律的研究仅停留在猜测阶段,都没有严格的科学论证。决定性的研究工作是由法国科学家库仑(C.A.Coulomb,1736-1806)完成并公诸于世的(1785年)。在库仑之前,剑桥大学的米切尔(J.Michell,1724-1793)用扭秤测量了磁极间的斥力遵守平方反比关系。库仑受到启发,设计了精密的扭秤实验,精确测得同类电荷斥力的平方反比关系。他又把异类电荷引力与单摆受地球引力作用类比,设计了电摆实验,再根据单摆周期公式类似分析测量电摆周期,进而得出电荷引力的平方反比关系。他还用上述方法测过磁力,也得出了磁力同距离的平方反比关系。他用金属球互相接触的方法,获得了各种大小的电荷,最终得出了完整形式的库仑定律即f=kq1q2/r2。但库仑测出的指数是有偏差的,其偏差为0.04。这个定律与牛顿万有引力定律惊人地相似。用库仑自己的话说,电力正比于“电质量”的乘积。库仑实际上苏格兰的罗比森(John Robison,1739-1805)和卡文迪什(Henry Cavendish,1731-1810)在库仑之前十多年就已经作过电力定量的实验研究,确定了电力平方反比定律,可惜没有及时发表而未对科学的发展起到应有的推动作用。3.电流的发现与研究18世纪末,电学的研究从静电领域发展到动电领域。1791年,意大利解剖学教授伽伐尼(A.Galvani,1737-1798)发表的《论肌肉运动中的电力》一文中叙述了“动物电”的产生过程。他发现,当两种连接起来的金属导体的两端分别与肌肉和神经接触时,会引起青蛙四肢的抽搐。他设想这是由神经传到肌肉的一种特殊电流引起的,金属起着传导作用,于是把这种电流称为“动物电”。而伏打(A.Volta,1745-1827)则认为神经电流的说法有问题,青蛙抽搐是外部电作用的结果。伏打发现,将相连接的两种金属浸在液体或潮湿的物质中会出现电效应。1800年,伏打把锌片和铜片夹在盐水浸湿的纸片中,重复地叠成一堆,形成了很强的电源这就是著名的伏打电堆。把锌片和铜片插入盐水或稀酸中也可做成电源。这种电源可以提供持续的电流,从而将电学的研究引入到了动电的途径。1821年,塞贝克(Thomas Johann Seebeck,1780-1831)发明了温差电偶。欧姆(Georg Simon Ohm,1789-1854)利用温差电偶做成稳定的电源(伏打电源不稳定),设计了一种电流扭秤来测量电流的强度。1826年,欧姆建立了电路定律即欧姆定律。4. 电磁联系的发现在1820年之前,电和磁是独立研究的。此前,库仑、安培、托马斯·杨、毕奥等都坚持电和磁的独立性,尽管电作用和磁作用有相似性。然而,电现象和磁现象的联系还是引起了人们的注意。当时,关于闪电使钢铁物件磁化的报道时有所见。富兰克林在1751年发现莱顿瓶放电可以使钢针磁化或退磁。1805年,德国的哈切特(J.N.P.Hachetle,1769-1834)和笛索米斯(C.B.Desormes,1777-1862)把伏打电堆悬挂起来,企图观察电堆在地磁作用下的取向,但未得出实验结果。英国的戴维(Humphrey Davy,1778-1829)在这一时期也观察到磁铁能够吸引或排斥电极碳棒间的弧光。这些早期的观察或实验虽然未能得到关键性的结果,但对电磁学的研究起了非常重要的作用。丹麦物理学家奥斯特信奉康德的哲学,认为自然界各种基本力是可以相互转化的,深信电和磁有某种联系,就象电和发热发光有联系一样,电有可能产生磁效应。1820年,他做起了这类实验。他开始以为电流磁效应是纵向的,便在通电导线前面放一根磁针,企图用通电导线吸引磁针,结果磁针毫无动静。这一年4月,他在做有关电和磁的演讲时,尝试把磁针放在导线的侧面,当接通电源时,发现磁针向垂直于导线的方向偏转过去。经过反复实验,奥斯特终于探索到电流的磁效应沿着围绕导线的螺旋方向。奥斯特的发现,使电与磁没有内在联系的传统信条破灭了,为物理学新的大综合开辟了道路,正如法拉第所说:“猛然打开了科学中黑暗领域的大门”。电流产生磁效应的消息使物理学界大为震动。安培((A.M.Ampere,1775-1836)、阿拉果(D.F.J.Arago,1786-1853)、毕奥(Jean Baptiste Biot,1774-1862)和萨伐尔(F.Savart,1791-1841)等迅速投入了相关研究。毕奥和萨伐尔仔细地研究了载流直导线对磁针的作用,确定了这个作用力与电流强度成正比、与电流到磁极的距离成反比、力的方向垂直于这一距离。拉普拉斯提出了电流的作用可以看作许多电流元单独作用的总和,从数学上推出电流元作用的表达式即毕奥—萨伐尔定律。安培提出了确定磁针偏转的著名右手定则,提出了地球磁性由从西向东绕地球做圆运动的电流引起的设想,提出了磁铁类似于通电线圈的看法,提出了“分子电流”假说(每个分子形成的圆电流相当于一根小磁针)并把一切磁现象都归结于电流间的相互作用。安培定量研究了电流之间的相互作用,推出了电流元之间的相互作用力公式(在形式上与万有引力定律相似,具有平方反比关系),认为电流元相当于力学中的质点,它们之间存在的超距作用象万有引力一样。安培定律的建立奠定了电磁理论的基础。电流的磁效应又引起了一种逆向思考:是否可以用磁体在导线中引起电流?菲涅耳、安培、阿拉果、塞贝克等许多物理学家围绕这个课题作了大量的实验。直到十年后,英国的法拉第(M.Faraday,1791-1867)和美国的亨利(J.Henry,1799-1878)才发现了磁生电的现象即电磁感应。实际上阿拉果于1824年就发现转动的铜盘可以带动磁针旋转、磁针单摆在金属盆上方摆动时受到阻碍很快衰减下来。这是最早发现的电磁感应现象,但对其电磁感应机理尚未认识清楚。亨利比法拉第早一年发现电磁感应,但没有发表。他还于1827年发现自感现象。法拉第不但独立地发现了电磁感应,而且工作的深度和广度远远超过亨利。因此,人们把电磁感应发现的功劳归于法拉第。1821年,他进行了电磁旋转器的研制,实现了载流导线绕磁棒转动和磁棒绕载流导线转动,这是历史上第一台电动机。然后他又进行了一系列磁生电的实验研究。他根据奥斯特稳恒电流产生稳恒磁场的实验,开始以为稳恒磁场也可以产生稳恒电流,以致于年复一年的实验均告失败。但他坚信电与磁是相互联系的、磁一定可以生电。直到1831年8月29日终于发现,绕在一个铁环上的两个互相绝缘的线圈,稳定电流不能在另一线圈中产生感应电流,仅当电流改变时才能感生另一电流。接着,他又做了其它实验并进行了总结。11月24日,法拉第向皇家学会报告了他的发现:变化的电流、变化的磁场、运动的稳恒电流、运动的磁铁、磁极附近运动的导线都可以感生出电流。法拉第关于感应电流的方向,法拉第叙述得不太明确。1833年,俄国的楞次((H.F.E.Lenz,1804-1865)在考察电磁感应现象的全过程后,提出了确定感应电流方向的楞次定律。1833年由纽曼(F.E.Neumann,1798-1895)以定律的形式给出了电磁感应的定量规律。1847年,亥姆霍兹揭示出楞次定律是能量守恒定律在电磁现象中的具体反映。法拉第的贡献不仅是发现电磁感应,他还是电化学的奠基人,也发现了磁光效应和物质的抗磁性。他创建的力线思想和场的概念为电磁场理论奠定了基础。电磁感应定律是发电机的理论基础,其确立开创了人类利用电能的新时代。5.力线和场的初步思想法拉第关于力线和场的思想对电磁学乃至整个物理学的发展都有重要影响。他不同意安培关于电磁力是超距作用的观点,首先提出了场的思想。他认为,带电体或磁体(电流)在其周围空间会产生一种媒质或“紧张”状态,叫做“场”,电磁作用是依靠场来传递的。为了直观地描述场的形式,他又引入“力线”的概念。例如用铁屑可以显示出磁力线排成的图形。他认为,电力和磁力不是通过虚空的超距作用、而是通过电力线和磁力线传递的;电力线或磁力线由带电体或磁极发出,弥漫于空间,作用于其中的每一个电磁物体;力线的传播速度是有限的。法拉第用力线的概念表述了电磁感应现象:电磁感应是由于导线切割磁力线而引起的,感生电流的大小与切割的磁力线的数目成正比。几十年后,开尔文评价说:“在法拉第的许多贡献中,最伟大的一个就是力线的概念了,借助它可以把电场和磁场的许多性质简明而富有启发性地表示出来”。6.经典电磁理论的确立电磁学丰硕的实验研究成果以及法拉第的力线和场的概念为麦克斯韦(James Clerk Maxwell,1831-1879)建立统一的电磁场理论准备了条件。麦克斯韦经过近十余年的努力,分三步才建立起电磁理论。1856年,他发表了第一篇论文《论法拉第的力线》。他在开尔文对热传导、流体运动和电磁力线的类比基础上,把流线的数学表达式用到电磁理论中,用精确的数学形式表述法拉第的力线概念。1862年,他发表了第二篇论文《论物理的力线》。他提出了分子涡流以太模型并计算得到电学和磁学中全部已知的基本定律,引入了“位移电流”假设(变化的电场引起介质电位移的变化)并认为位移电流与传导电流一样在空间激发磁场,保证了理论的对称性即变化的电场产生涡旋磁场、变化的磁场产生涡旋电场(感生电场),这就为脱离场源而交互变化的电场和磁场—电磁场的独立存在提供了依据。1865年,他发表了第三篇论文《电磁场的动力理论》。他确立了电磁场的概念,定量表示出位移电流,通过数学解析方法总结了电磁场基本方程组。由这组方程推出了电磁场所遵循的波动方程,预言了电磁波的存在且计算出电磁波的传播速度与在真空中的光速相同,进而确立了光的电磁理论。1865年以后,他把电磁场理论进行系统整理、总结,于1873年出版了《电磁理论》这部经典名著。麦克斯韦理论所包含的深刻和新颖的思想以及高深的数学,一时还难以被人们所理解。要大家接受它,还需要强有力的实验证据。德国物理学家赫兹(Heinrich Hertz,1857-1894)在1887—1888年期间用实验充分证实了麦克斯韦预言的电磁波的存在,并且测出了电磁波的波长,根据波长和电磁振荡频率计算出电磁波速度是光速。赫兹还用实验证实了电磁波能产生反射、折射、干涉、衍射和驻波。麦克斯韦曾提出过“电磁以太说”,赫兹实验的成功被人们理解为是彻底证实以太媒质存在的决定性实验。1900年前,电磁以太被逐渐看作是宇宙中的基本实体。经过赫兹等人的修改,麦克斯韦方程由原来的八个方程变成了具有完美对称性的四个方程而基本上确定下来。麦克斯韦的电磁理论实现了电磁光的统一,这是自牛顿实现天上和地上的运动的统一后的又一次大统一。他的理论成果也是现代无线电电子工业的理论基础。麦克斯韦
物理知识系列讲座(二)——从自然哲学到现代物理学2——科学革命和科学观的形成中国在15-16世纪曾有过资本主义的萌芽,但很快便枯萎了。然而,在世界范围内,资本主义生产方式却首先在欧洲生根开花结果。资本主义的发展不仅提出了对发展科学的需求,而且也提供了科学发展所需要的物质技术条件,使得系统的实验科学成为了可能。伴随着资产阶级反对封建主义的政治、文化革命运动,科学从服从宗教神学、作为神学奴卜的状况中解放出来。一场科学革命随之到来,预示着新的科学观必将诞生。近代科学的兴起,既标志着科学和哲学从神学中得到解放,又标志着科学和哲学、自然科学和自然哲学走上相对独立发展的道路。一、欧洲文艺复兴运动中世纪晚期,欧洲长达千余年的封建、神学统治已摇摇欲坠,资本主义的生产方式从封建社会中逐步形成和发展。地中海周边城市出现了资本主义萌芽,扩大贸易和市场的要求推动了航海业的发展和地理上的新发现。1492年,哥伦布发现了美洲新大陆,1519-1522年麦哲伦的船队完成了环球航行。航海与贸易开拓了市场,加速了资本的原始积累进程。航海、贸易和战争的需要使欧洲的工业迅速发展,同时引起了一系列生产技术革命,也直接促进了天文学、地理学、物理学等科学的形成和发展。14、15世纪,出现了改良的脚踏纺织机、水力风力发动机、磨机和钟表,逐渐产生了关于摩擦、动力测量、传动和匀速运动理论。射击武器的发展,提出了弹道、空气阻力及抛体运动等问题,造船业的发展提出了浮力研究、船的载重和坚固性等问题。13世纪兴起的眼镜业为光学的发展打下了基础。总之,资本主义生产的发展需要科学技术,又为科学研究提供了物质条件。在欧洲经济发展的同时,一场规模空前的“文艺复兴运动”开始了。由于天主教会是封建制度的精神支柱,严密地统治着社会生活、思想文化、教育等各个方面,这一运动的矛头首先直指教会和神学。随着政治运动的开展,思想文化领域内出现了反映新兴资产阶级要求、反对封建思想统治的强大的运动即文艺复兴运动。这一运动首先在意大利发起,进而很快扩展到整个欧洲。文艺复兴是14世纪中叶到17世纪初发生在欧洲的伟大的思想解放、艺术创造、科学发现运动。“文艺复兴”一词,意指古代灿烂的文化在经历了长期的衰落和沉寂之后,现在又得到了复兴。文艺复兴的指导思想是人文主义或人本主义,这是从神的世界回到人的世界的一种资产阶级价值观。人文主义者提倡人权和思想自由,反对神权,要求把人的思想、感情和智慧从教会神学的束缚中解放出来,重视人与自然的统一,倡导对自然的研究。英国哲学家富兰西斯·培根(Francis Bacon,1561-1626)提出了“知识就是力量”的口号,并且指出科学的目的就是要用新发明和新发现来改善人类的生活。弗朗西斯.培根那一时代不仅复兴了古代文化,更是创造了新的文化和一种气氛,而且在文学、艺术、科学、政治理论等各个领域人才辈出,群星灿烂。大学林立,到处是讲学、辩论、著述、出版和宣传。正如恩格斯所说:“这是一次人类从来没有经历过的最伟大、进步的变革,是一个需要巨人而且产生了巨人——在思维能力、热情和性格方面,在多才多艺和学习博学方面的巨人的时代” 。达·芬奇(Leonardo da Vinci,1452-1519)是这些巨人中的杰出代表。他是一个多才多艺的天才,《最后的晚餐》《蒙娜丽沙》等绘画作品千古不朽。他在当时每一个学科领域都取得了辉煌的成就,不仅是画家、雕刻家、音乐家,而且是哲学家、工程师、物理学家、数学家、生物学家。他在物理学上的成就主要有:对冲击过程进行了观察,初步表述了惯性原理;研究过材料的强度;研究了抛体运动(弹道)、单摆运动,提出了运动合成的概念;用虚速度方法证明了杠杆原理;重新发现了阿基米德的液体压力的概念,提出了连通器原理,研究过液体的流动;认识到光有类似于水波和空气中波的波动特点;通过绘画,研究过光和影的规律、眼睛的构造并说明了视网膜上像形成的原因。研究过水力、热力动力机械并试图从减少摩擦和部件磨损来提高机械效率;设计过永动机并得出永动机不可实现的结论。达.芬奇总之,文艺复兴运动的意义在于,在政治、文化、科学等各个领域引起了前所未有的思想大解放,彻底动摇了封建制度和神权统治的根基,给世界留下了一大批文学、艺术、科学、政治理论成果与精神财富,为近代科学的兴起和新科学观的诞生奠定了基础。二、科学革命真正的科学革命是从波兰天文学家哥白尼(Nikolaus Copernicus,1473-1543)否定地心说、提出日心说开始突破的。中世纪的教会把上帝创造世界及与之适应的地心说奉为不可违反的教条。地心说的创始人是古希腊哲学家柏拉图(Plato,约前427-前470),认为地球是一个静止不动的球体,日月星辰都围绕着它运转。绝大多数学者都赞成这种观点。托勒密(Ptolemy,100-170)通过天文观测进一步发展了地心说并给出了一个完整的宇宙模型。他认为宇宙有“九重天”,即一重天是月亮天;二、三重天是水星天和金星天;太阳居住第四重天上,是宇宙的主宰,其光辉照耀整个宇宙,其余依次是火星天、木星天、土星天、恒星天(全部恒星镶嵌其上)。最高的是九重天即上帝或神灵居住的天堂。地球于宇宙中心不动。中世纪的教会把托勒密学说与宗教教条结合起来,认为上帝创造一切包括人,人居住于宇宙中心—地球上。上帝创造的其他星体都是为人服务的,太阳给人类以光明和温暖,月亮给人类在黑暗中以光明,其他星体的天象变化预卜吉凶祸福。地心说成了封建神学统治的思想基础。哥白尼哥白尼详细分析了有关行星运动的大量资料,,经过许多年的观测和计算,最终完成了一部划时代的科学巨著《天体运行论》,提出了一个以太阳为中心的宇宙结构体系,推翻了主宰西方思想长达千余年的托勒密的地心说。哥白尼对宇宙结构是这样描述的,最远的恒星天球包罗一切,它本身是不动的;在行星中土星的位置最远,三十年转一周;其次是木星,十二年转一周;然后是火星,两年转一周;第四是地球和同它一起的月亮一年转一周;第五是金星,九个月转一周;第六是水星,八十天转一周;等等。他还得出了各个行星到太阳的相对距离。哥白尼学说建立后,人们一直认为太阳系只有六颗行星,直到1781年,才知道土星外的天王星是第七颗行星,随着海王星和冥王星的发现,人们才认识到太阳系有九大行星。哥白尼学说得到了布鲁诺的宣扬和支持,但布鲁诺又扬弃了太阳是宇宙中心的观点,认为宇宙是无限的,在太阳系外还有无数的世界。他的观点更加有力地冲击了关于宇宙有限、地球中心的宗教教义,教会对其恨之入骨。哥白尼学说明显的优点在于(1)提供了用匀速圆周运动解释天体现象的简单几何方案,使天文测算变得较简单了。(2)把行星的排列顺序与它们的轨道半径和周期紧密联系起来,形成了一个和谐有序的整体。(3)首次提出了相对运动的思想,揭示了太阳的东升西落不是太阳绕地球转动、而是地球自转的原因。1852年法国的傅科完成了著名的傅科摆实验以及光行差现象的观察,都证明了地球的自转,日心说逐渐被人们所接受。哥白尼的日心说仍然是一个缺乏物理基础的模型,因为他假定行星都在轨道上做圆周运动。丹麦天文学家第谷·布拉赫(Tycho Brahe,1546-1601)经过长达21年的艰苦观测,记录了行星位置,得到了详细而精确的数据。当他用数据去拟合哥白尼学说时,发现日心说中的行星圆轨道模型并不是完美的,只是粗略的近似。第谷的学生、德国天文学家开普勒(Johannes Kepler,1571-1630)摆脱了“匀速圆周运动”的老观念,在第谷的工作基础上,经历了长大17年的研究,终于从第谷浩繁的数据中发现并归纳出行星运动三大定律:(1)行星做椭圆轨道运动,太阳位于椭圆的一个焦点上;(2)太阳到行星的矢径在相同时间内扫过相等的面积(如图1-2-1);(3)行星绕太阳的运动周期的平方正比于它绕太阳的圆轨道的半长轴a的立方即T2/a3=常数。开普勒定律对后来牛顿的万有引力定律的发现具有奠基性作用。图1-2-1 开普勒定律意大利科学家伽利略从物理学的角度支持了哥白尼学说。1609年他制成了第一个天文望远镜,次年获得了几个重大发现:月球和金星表面有山谷;木星有四颗卫星;太阳表面有黑子,从黑子有规律的运动判断太阳以27天左右的周期转动;银河由千万颗暗淡的星体组成。伽利略的发现既表明了古代关于游动的天体只有7个的断言,也表明地球并不是所有天体绕之运动的中心,这是对哥白尼学说的重要支持。1632年,伽利略的巨著《关于托勒密和哥白尼两大世界体系的对话》对哥白尼学说进行了理性论证:(1)论证了天体和地球在本质上是类似的;(2)论证了地球的周日运动,驳斥了地球不动的观点,而且还应用了惯性原理、运动叠加原理和相对性原理,说明在地球上进行的一切实验都不能证明地球是否运动,为地动说奠定了物理基础;(3)论证了地球的周年运动,证明了哥白尼体系的和谐简明,另外对宇宙有限和具有中心的观点提出了怀疑;(4)叙述了潮汐理论,指出潮汐是地球运动的一个证据(这个理论是错误的,潮汐是太阳和月亮的引力造成的)。伽利略宣传哥白尼学说、抨击托勒密体系和经院哲学,曾受到教会的迫害。后来伽利略又继续力学的研究工作,秘密出版了《关于力学和局部运动两门新学科的谈话和数学证明》一书。伽利略为以后牛顿力学的建立铺平了道路。总之,科学革命的实质是思想大革命。科学革命使科学从服从于经院哲学和神学的束缚中解放了出来,确立了与旧的世界图景完全不同的新的世界图景,新的科学观和思想方法开始成熟起来,也使自然科学从自然哲学中分化并走上独立发展的道路进而逐渐形成系统的学科体系。从哥白尼的日心说开始到后来牛顿力学体系的建立标志着第一次科学革命的完成,这是一次从朴素自然观到以机械自然观为核心的经典科学理论的提升。三、科学观的形成科学观涉及到人们对自然的看法、对科学本质的理解以及科学研究的态度、思维和方法。哥白尼学说引起了人们自然观的根本转变,使人类离开感官的直接提示或外观现象而进入现象后面的本质,虽然看到的是太阳绕着地球运动,实际上是地球自身转动的缘故。新的科学观也是同对经院哲学的批判而形成的。弗兰西斯·培根认为经院哲学对正确地研究自然是有害无益的,强调人是自然界的主人。法国数学家、物理学家和哲学家笛卡儿(Rene Descartes,1596-1650)认为必须创立为实践服务的世俗科学代替经院哲学,提出了“怀疑原则”作为创立真正科学的出发点。他主张怀疑包括经院哲学在内的那些过去被当作真理的一切东西,一切从基本开始,以保证认识的基础绝对可靠。伽利略坚决主张科学认识的自由,提倡自由探索精神,指出宗教在科学上是毫无意义的。科学研究方法是科学观的一个重要方面,它指导人们如何认识自然并掌握自然规律。在经验和实验基础上建立认识是近代科学革命的明显特点。弗兰西斯·培根是最早倡导新科学方法的人之一。他认为,一切知识来源于感觉,科学在整理感性材料时,用的是观察、实验、归纳、分析、比较的理性方法,经验、实验是真理的来源和检验标准,利用一定的仪器有程序有规则地进行的实验才是科学知识的可贵源泉。笛卡儿也认为实验可以提供“原始前提的必要素材”,还能检验所得结论的正确性。伽利略同样强调,人们必须通过实验去阅读“自然之书”。当时的科学家不仅强调了经验、实验在认识中的作用,而且还开始对实验方法进行研究。系统的实验研究方法是把对自然的研究变为真正的科学的重要标志。实际上,物理学在本质上就是一门实验学科。根据获得的经验和实验资料建立科学理论体系,还必须进行理论概括。培根提出了经验归纳法即从大量的个别经验事实中概括出一般原理的方法,还提出了正确归纳的步骤即列举正面和反面事例、提出假说、通过实验进行选择修正、最后得出科学结论。由于现象和事例不可穷尽,归纳出来的结论必然受到局限。培根对假说不够重视,认为只要对资料进行系统整理,正确的假说就会自然显现出来。实际上并非如此简单,所以他的归纳法有明显缺陷,但是其方法论思想具有深远意义。笛卡儿与培根的思想不同,他更强调理论思维即理性,把理论思维作为知识的出发点。他对物理学中发展起来的数学方法十分赞赏,认为一切科学都应该按照数学形式建立起来,从明晰的原理出发并通过逻辑途径和数学方法进行论证,就可以得出科学结论,而实验只具有检验理论结果的作用。笛卡儿的唯理论方法也是有缺点的,但这种方法对物理学中理论思维的发展和演绎方法的广泛应用产生了重要影响,也是当时科学哲学和自然科学最重要的思想根源之一。笛卡儿的唯理论方法忽视了实验和经验的作用,培根的经验归纳法不了解数学的作用,两者的相互补充是近代科学新方法论的基础。真正代表近代科学新方法论精神的是伽利略和牛顿。实验和数学演绎相结合的方法到了伽利略之后已经成熟。伽利略很重视观察和实验,但又认为科学的真正目的是阐明客观现象的因果联系,而且需要对材料进行确切的数学分析和数学概括并用简洁的数学形式把结果表达出来。伽利略开创的近代科学研究方法可概括为:对自然现象进行观测,总结出规律;提出理论假设,解释实验现象;利用数学和逻辑得到推论;对推论进行客观、可重复、精确定量的实验检验;修改理论及假设;实验检验理论及假设;……。这种严谨的方法所得出的结论建立在强有力的实验基础之上,因而是可靠的。他所倡导的这种理论和实验结合的科学研究方法至今仍是自然科学家所遵循的研究准则。
物理知识系列讲座(二)——从自然哲学到现代物理学序 言古希腊人把对自然现象的观察和理解笼统地包含在一门学问中即自然哲学,它是自然科学的总结。直至牛顿时代,物理学与哲学仍然属同一学科。牛顿把当时的物理学叫做自然哲学,他所著的关于物理学的名著就称为《自然哲学的数学原理》。自然科学分化为物理学、化学、天文学、地理学、生物学、力学等(数学仅是一种工具)只是近三百年多年的事。从17世纪牛顿力学的建立到19世纪电磁学基本理论的形成,物理学逐步发展成为具有完整体系的独立的学科。什么是物理学?物理学就是研究物质结构、运动和相互作用的基本规律以及它们的各种实际应用的学科。与其他学科相比,它更着重于对物质世界最普遍最基本的规律的追求,因而物理学是其他自然科学的基础,是工程技术的源泉。物理学作为自然科学的带头学科,历来是人类物质文明发展的动力。作为人类追求真理、探索未知世界奥秘的工具,物理学是一种哲学观和方法论,物理学中充满着活的哲学思想。同其他任何知识领域一样,物理学也是人类社会实践的产物,它是随着人类社会实践的发展而产生、形成和发展的。物理学的发展经历了古代物理学时期(16世纪以前)、经典物理学时期(16世纪—19世纪)和近现代物理学时期(20世纪以来),其研究内容、方法和观念都在不断发生深刻的变化。本系列讲座将简要地介绍物理学的发展历程。讲座1——古代物理学思想人类的出现是自然界演化和发展的产物。人类社会的不断进步也是人类不断认识自然、征服自然、改造自然的过程。严格意义上的科学形成于近代,但究其发展渊源要追溯到古代。一 、中国古代物理学思想作为四大文明古国之一的中国最早发明指南针、火药、造纸和印刷术,在农业、手工业、天文、航海、军事、桥梁和数学等方面曾居于世界前列,对古代物理学的贡献也最为显赫,为世界文明史写下了光辉的篇章。从远古到青铜时代直至奴隶社会,人类发明了石器、取火、陶器、各种工具和简单机械,乐器、兵器,建筑、纺织、舟车等手工业不断发展,从而促进了物理学知识的积累。春秋战国,“百家争鸣”,各种技术发展迅速,有关力学、声学、光学、电学、磁学知识不断丰富。从秦汉、隋唐到宋元时期,在物理学理论研究不断深入的同时,也进行了实验研究,如地磁偏现象、光学的系统研究等,这一时期中国物理学达到了很高水平。但在明代以后,由于在长期的封建统治和科举制度下,中国的物理学以及科学技术相对于西方发展缓慢,同时也渐渐融入了世界物理学潮流。以下简要介绍中国古代物理学的一些思想。1.关于物质本原的认识从远古时代开始,人们就在探索自然现象各种变化的原因及宇宙生成问题。在中国古代,关于对物质本原的研究主要有“阴阳学说”、“五行思想”、“原子观点”、“元气说”诸理论。(1)阴阳学说在《易经》的注解书《易传》中,作者指出:“易有太极,是生两仪,两仪生四象,四象生八卦”,这就是对天地万物的解释。“太极”指宇宙本原(物质的原始状态),“两仪”就是阴阳,“四象”是春夏秋冬四时,“八卦”即天、地、山、泽、水、火、风、雷,把自然现象归纳成为八种基本现象。老子(约公元前600 - 公元前500)在《老子》中说:“万物负阴而抱阳”。按上述阴阳学说,世间万物的千变万化、生生不息都归结于阴阳之间的彼此消长、对立统一、相互作用和相互转化。(2)五行思想“五行”指“金木水火土”五种基本物质或元素。史伯(西周末)提出“和实生物,同则不继”,认为世间万物皆由这五种元素构成。后来,人们系统地研究了五种元素之间具有相生和相克的基本关系即:土生金、金生水、水生木、木生火、火生金和土克水、水克火、火克金、金克木、木克土。这种关系能说明一些自然现象,但却被赋予了某些神秘色彩,从而对古代物理学的发展产生了消极影响。(3)原子观点关于物质结构,《墨经》中讲到“端”的“非半”性质与希腊的“原子说”是世界上关于“原子论”的最早起源。《墨经》记述,“端,体之无厚而最前者也”。其解释是,端“是无间也”。意思是说,端的尺寸非常小(“无厚”),内部无间隙,不能再分割,是构成物质的最小颗粒。《庄子·天下》指出:“一尺之棰,日取其半,万世不竭”,认为物质可无限分割。这些都是中国古代朴素的物质结构论点。(4)元气理论“元气说”是中国古代物质结构理论研究的一个重要成果。它源于“阴阳学说”,经汉、唐、宋发展到明末清初,许多古代学术大家都进行了研究,王船山(1619-1692)进行了全面总结并将其推向了最高峰,形成了系统的理论。东汉时的王充(27-约97)在《论衡》中说:“元气未分,浑沌为一;万物之生,皆禀元气”。北宋时的张载(1020-1077)则指出:“一物两体,气也”,“一物两体,其太极之谓与?”。“元气说”的主要观点可以概括为:天地是包含元气的实体,万物由物质性的元气构成,是气的不同凝聚状态。万物从混沌中产生和发展,是元气运动所致。有形的物体不可灭,无形的元气也不可灭,元气的运动也不可灭。“元气说”充分论证了客观世界的物质性、物质的不灭性和运动的永恒性。2.关于时间、空间和运动的认识魏国的尸佼(公元前390-330)最先给宇宙以定义:“上下四方曰宇,往古今来曰宙”,此处宇即空间,宙即时间。《庄子》关于宇宙的定义是:“有实而无乎处者,宇也;有长而无本剽者,宙也。”意思是,宇是实在的且无所不在,宙有长短但无始终,说明了时空的无限属性。《管子》认为,天地包裹万物,天地又包裹在宙合之内,说明了时间与空间的联系。关于运动与静止,墨家给出了定义:“动,域徙也”“止,以久也”,意思是运动意味物体空间位置(域)的改变(徙),静止意味物体处于空间某一位置有一段时间(久)。至于时空与运动的关系,墨家写道:“宇域徙 ,说在长宇久”,即“宇徙而又处宇,宇南北,在旦又在暮”。也就是说,物体在空间移动,是空间随着时间的由近及远的变化,物体离开原空间而占据另一空间,好比物体从南到北,经历的时间从早到晚。这样,时间与空间的联系便统一于物体的运动中了。《吕氏春秋》中描述的“刻舟求剑”的故事,说的是一个人坐在行船上,手中的剑掉到水中。他在船上掉剑的位置刻上记号,以便到水中捞剑。作者实际上是笑话掉剑人以行船为参照系去找剑是独劳的,应该以河岸为参照系确定剑在水中的位置才能找到剑。晋代束皙(262-301)说:“乘船以涉水,水去船不徙矣”“仰游云以观,日月常动而云不移”。汉代《春秋伟·元命苞》中写道:“天左旋,地右动”。这些都是古人对运动相对性的描述。《春秋伟·考灵曜》中记述:“地恒动不止,而人不知,比如人在大舟中,闭而坐,舟行而人不觉也”,可以认为是相对性原理的思想。3.关于力的认识墨经中写道:“力,刑之所以奋也”“重之谓下,举重,奋也”。如果把“刑”即“形”理解为物体,“奋”理解为“运动状态的改变”,这与牛顿定律似乎不谋而合。古人已明白重力是向下的,人用身体克服向下的重力,举起重物就是“奋”。南宋吴曾在《能改斋漫录》中记述着这样一个故事:燕昭王养的一头肥猪太大,最大的秤也不能称出猪的重量,便命“水官”用船去称重,才称出猪的重量。东汉末年“曹冲称象”的故事也与此相似。墨家曾写道:“沉形之衡也,则沉浅非形浅也,若易五之一”。可以这样理解,浮体放入水中平衡时,浮体下沉一定深度,浮体的重量与水对物体下沉部分的浮力相等,好比五件物品与一件物品的等价交换。可见古人对浮力已有较深刻的认识。至于弹力,我国古人早就有所认识并加以利用了,如弓箭、弹弓、管乐器中的簧片等,而且在许多书籍中也记载了外力与形变的正比关系。在古代,利用杠杆原理制成的各种机械、工具、衡器在农业和商业活动中普遍使用。张衡(78-139)在天文、数学、物理和机械制造等方面均有许多杰出贡献。他发明的侯风地动仪,就用到了惯性和杠杆原理等力学知识。地动仪中的“都柱”重心高,对地震敏感,地震波传来则因惯性倒向震源方向并触其相应的曲杠杆。由于杠杆作用,该方向龙嘴张开滑出铜球落入蟾蜍嘴里,便可判断出地震方向。4.关于光的认识中国古代在光的直线传播、光的反射和折射、光的色散、小孔成像实验有许多研究。我国春秋战国时期,墨子(公元前479年~前381年)及其弟子在《墨经》中就已记载着光的直线传播(影的形成和小孔成像等)和光在镜面(凹面和凸面)上的反射现象,并提出了一系列经验规律,把物和像的位置及大小与所用镜面的曲率相联系。《墨经》记录的有关光学知识是世界上最早的。《墨经》记述的小孔成像实验如图1-1-1,物体通过小孔成的像是倒立的。光照在物体(人)上,从物体上发出的投射到屏上的一切光线均相交于针孔处,物体下部发出的光线像箭一样射到高处,上部发出的光线射到低处。《墨经》记载着凹面镜的成像有两种:缩小的倒立像和放大的正立像(但没有记载第三种像即物体处于球心与焦点之间能形成放大的倒立像)。还发现凸面镜所成的像只有一种即位于镜面另侧的缩小的正立像。对平面镜成像,墨家认识到物与像离镜面等距、点点对应。图1-1-1 小孔成像我国宋代的沈括(1031-1095)在《梦溪笔谈》中记载了极为丰富的几何光学知识,他不仅总结了前人的研究成果,而且对凹面镜和凸面镜的成像规律、测定凹面镜焦点的原理以及虹的成因等方面均有创造性的阐述。南宋末的赵友钦对小孔成像进行了全面而系统的实验(改变光源、改变物距、改变像距、改变孔的形状大小),得出了一些有意义的结论如大孔成像(明亮部分)和大孔形状相同,小孔成像和光源形状相同。沈括古人很早就注意到彩虹这种大气光象。唐代的孔颖达(574-648)指出:“云薄漏日,日照雨滴则虹生”。著名道士张志和(约730-810)首次进行了日光色散实验即“背日喷乎水成霓虹之状”。沈括说“虹乃雨中日影也,日照雨则有之”。朱熹认为虹是“日色散射雨气”。中唐道士张果还用白石英制作了三棱镜,记录了世界上第一幅色散光谱图并且画出了光图,也许注意到了光的折射现象。5.关于电和磁的认识我国古代关于电现象的研究内容较丰富。“电”字最早见于西周时期的青铜器上的铭文中,实际上是对雷电现象的记录。雷电和摩擦起电是古人对电现象研究的主要内容。东汉王充在《论衡》中记述:“顿牟缀芥,磁石引针……”(顿牟即琥珀),即是说摩擦过的琥珀可以吸引轻小物体如芥籽、磁铁可以吸引铁针。他还用“元气”理论来解释静电和静磁现象,认为芥籽和琥珀、铁针和磁石具有相同的“气性”,因而互相感动而吸引(“气有潜通”)。雷电是一种常见的自然现象,响为雷,闪为电。雷电的破坏作用及发生时的情景在古书中有许多记载。雷电是如何产生的?历代学者用“元气说”作了许多解释。先秦的慎到(前395-前315)首先提出:“阳与阴夹持,则磨轧有光而为电”(磨轧即摩擦)。《淮南子·坠形训》中指出:“阴阳相薄为雷,激扬为电”,即是说阴阳二气彼此撞击产生雷,而相互渗透产生电。王充认为,雷电是因为阴阳二气之争、产生爆炸而形成的。朱熹认为雷电是“阴阳之气,闭结之极,忽然迸散出”,一种阴阳作用的突变过程。明代刘伯温概括了历代学者的观点:“雷者,天气之郁而激发也,阴气团于阳,必迫,迫极而迸,迸而声为雷,光为电”。对于建筑物的防雷措施,古代工匠也有一些办法,例如把瓦做成鱼尾状,放在屋顶可防雷击。在《汉书》中还有“矛端生火”的记载,当云层(带电)经过时,矛端产生微弱亮光(放电)。对磁现象的认识可以追溯到冶铁业创建之初,因为天然磁体实际上是一种铁矿石。《吕氏春秋》记载:“慈石召铁,或引之也”“石,铁之母也。以有慈石,故能引其子”,明确地描述了磁石的吸铁性如同慈母吸引着自己的孩子。《淮南子》还记述了磁石吸引物质只限于铁,写道:“若以慈石之能连铁也,而求其引瓦,则难矣”“及其于铜则不通”。战国《韩非子》记载有司南勺(天然磁石做成的指向工具,像勺子,长柄指向南方)。为了改进司南的指向精度,后人创制了一些新的指南仪器如指南鱼、指南龟、指南针。沈括对指南针形制的改进有重大贡献。在研究磁针时,他还发现了地磁偏现象。12世纪,中国的指南针传入阿拉伯和欧洲,为世界文明的发展发挥了重要作用。6.关于声的认识中国古人对声学的研究有许多发现和创造,尤其在乐律研究方面有许多重要成果。另外对声音的产生与传播、共振与共鸣等现象也做了许多理论和实验研究。对声音的产生,宋应星认为,声“不能自为生”,须“两气相轧而成声”,例如“冲之有声焉,飞矢是也;振之有声焉,弹弦是也;辟之有声焉,裂缯是也;合之有声焉,鼓掌是也”,也就是说,声音的产生源于物体的振动或急速运动冲击空气。关于声音的传播,王充将之比做鱼在振动时引起水波的传播,认为人发声可使气产生振动,气对于声源振动而产生的波动像水波一样。他在《论衡》中说:“鱼长一尺,动于水中,振旁侧之水……”。宋应星也说:“物之冲气也,如其激水然。气与水,同一易动之物”,显然是把声音的传播类比水面波动现象。古人还以乐器做实验,对共振与共鸣进行了大量的研究(此处不再叙述)。建筑声学效应是中国古代对声音的反射、传播研究的重要成果,北京天坛的回音壁和山西永济的莺莺塔是声学在建筑上应用的杰作。二、 西方古代物理学思想1.关于物质本原古希腊哲学家们对宇宙本原、万物组成、大地构造等问题,进行了许多思考和辩论,提出了各种观点。其中主要有“元素论”和“原子论”等理论。(1)元素论泰勒斯(Thales,前620—前550)最早创立关于理性学科和哲学的学派—米利都学派(米利都—地中海东岸一个城市)。他对地中海沿岸陆地的起源进行了思考,认为大地漂浮在水面上,千差万别的万物应有同一本原,这个本原就是水。万物源于水又复归于水,任何东西都会产生和消灭,惟独水长存。泰勒斯的学生阿那克西曼德(Anaximander,前611-前547)认为,世界本原不是水,而是无任何规定性的“无限者”。阿那克西曼德的学生阿那克西米尼(Anaximanas前585-前528)认为大地像是“漂浮在空气中的一片宽大的树叶”,万物本原应是“气”。赫拉克立特(Heraclitus前540-前475)把物质本原归于“火”,他指出:“这个世界对于一切存在物都一样,它不是神也不是人所创造的;它过去、现在、将来永远是一团永恒的活火,在一定的分寸上燃烧,在一定的分寸上熄灭”“一切转为火,火又转为一切”。世界没有开端,没有终结,处于永恒的运动变化之中。恩培多克勒(Empedocles约前493-前433)认为,万物的本原不是单一的,应由四种“元素”组成即“土、水、气、火”,其中土、水、气代表物质的固态、液态和气态,火则代表颜色和温度。元素自身是不变的,它们的不同组合构成了丰富多彩的物质世界。亚里士多德(Aristotel,约前384-前322)对前人的研究做了总结,认为四种元素是世界万物的本原。但他认为,冷、热、湿和干是更基本的性质,四元素是这四种性质两两组合而成的物质本原,湿与冷组合成水,湿与热组合成气,干与冷组合成土,干与热组合成火。这样,四种元素不再是不变的,而是可以相互转变的,如加热水时,水中的冷为热所代替,水就变成气了。他还认为,在构成地时,土居于宇宙的中心,水与气分布其上,火在最上,月层以上的天体由第五种元素—以太构成。亚里士多德是古希腊最有影响的学者,17岁就读于柏拉图学园并在此学习工作20年之久。他在公元前335年回到雅典,建立了一个庞大的理论体系。他系统地研究了逻辑学、政治学、伦理学、文学、天文学、物理学、生物学,著作上千卷。其中《物理学》(physics一词起源于此)一书,叙述了当时人们对有关物体运动、空间和时间的认识。注意这里的物理学不是现代意义上的物理学,其原意是“自然论”或“自然哲学”的意思。亚里士多德(2)原子论古希腊毕达哥拉斯(Pythagoras,约前560-前480)创建了一个学术团体—毕达哥拉斯学派。该学派对数学的研究有很大成就,同时也对物质本原做了探索。他们认为,数是世界万物的本原,数支配着世界,事物是数的和谐表现。有了一个个的数目,才有几何上的点,有了点才有线、面、体,有了体才有火、水、气、土这些元素,进而构成万物。古希腊城邦爱利亚有一个学派—爱利亚学派在探讨物质本原的研究中,继承了毕达哥拉斯学派的思想,但把“数”以纯“存在”取而代之。德谟克利特(Democritus,约前460-前361)将毕达哥拉斯学派的思想和爱利亚学派的思想结合起来,建立了“原子论”观点。他把数学几何“点”与“存在”相结合,认为这种“存在”是“不可分的、不变的、球形的”,而且“存在”物太小非人的视力可及。他把这个“存在”取名为“原子”,意思是“不可分割”。这些小小原子可以形成某种几何结构,其排列组合便形成世界万物。原子论的大致要点是:(1)宇宙万物都由原子构成,原子是不可分割、不可破灭的极小而结实的物质单元;(2)宇宙中除了原子和虚空,不存在其它任何东西;(3)原子从恒古以来就存在,既不能创造,也不能消灭;(4)原子在数量上是无限的,在形式上是多样的,它们在一个无限的虚空中永远处于涡旋运动之中,因此形成各种复合物。由于组成物体的原子在数量、形状、次序、位置不同,故物体彼此各异;(5)原子在虚空中只有通过直接接触—压迫、撞击等,它们才能相互作用,超距作用不可能。伊毕鸠鲁(Epicurus,前341-前270)又发展了这一学说,认为原子不仅有形状上的差别,还有大小和重量的不同(按现在的说法,是原子量和原子体积的不同)。“原子论”观点对19世纪末20世纪初正式确定的近代原子论有直接和深刻的影响。德谟克利特2.关于运动和力亚里士多德将物体的运动分为自然运动和强迫运动。自然运动指重物垂直下落和轻物体竖子直上升的运动。自然运动的物体要寻找其天然位置,这与物质所含元素有关。例如,含土元素的重物的天然位置在地心,火元素的天然位置在天空,气和水的轻重是相对的。因而,重物下坠,烟雾升空,石头在水中下降,气泡在水中上升,这些都是自然运动。物体越重,下落越快,物体越轻,下落越慢,物体下落的快慢即速度与重量成正比。强迫运动指借助推力才能进行的运动。不推,物体就会处于静止状态。物体运动的速度与施加的外力成正比,与在介质中受到的阻力成反比。那为什么在推动者的作用结束后物体还会继续运动呢(如射出的弓箭、抛出的石头)?他这样解释,物体离开推动者向前冲将排开部分介质而在它的后面造成虚空,周围介质便填补这个虚空,这些介质又对物体形成推力,使得物体继续运动。那么物体的运动是如何终止的呢?这是由于介质的推力逐渐减至为零,或者是重力超过了这个力,或者是由于反作用。对物体下落越来越快的解释是,落体越接近天然位置,向天然位置运动的倾向就越强,或者物体下落时,它上面的空气柱重量增大,加强了强迫降落,下面的空气柱缩短,减少了对落体的阻力。显然,亚里士多德对物体运动的解释是错误的。阿基米德(Archimedes,约前287-前212)是古希腊一位杰出的科学家,他在几何学、物理学和工程领域的贡献都很大。他测定皇冠的含金量,发现浮力定律,一直被传为美谈。阿基米德在他的《论平面的平衡》和《论浮体》中详细论证了杠杆原理和浮力定律。他还发明了许多简单机械如滑轮组、螺旋提水器等。他曾经声称:“给我一个稳定的支点,我就能把地球挪动”。阿基米德阿拉伯学者阿勒-哈齐尼(Al-Khazini,12世纪人)发展了“比重”概念。他利用阿基米德原理,通过实验测定了许多物质如金、银、铜、铁、铅、水银、象牙、酒等比重。还发现,空气也有重量,阿基米德原理在空气中同样适用;大气密度随高度的变化而变化,离地越近,空气密度越大;在不同的高度,称出物体的重量不同。进而提出了一个重要的物理思想:物质的量与它的重量并不是一回事。另外他还以路程与时间之比来表示速度。12世纪,欧洲建立了牛津大学、巴黎大学、波伦亚大学,后来又建立了一些大学和学院,这些大学的建立对中世纪晚期的学术发展有重大作用。在中世纪后期,许多欧洲人也开始研究亚里士多德的著作和理论。通过研究,一些学者对亚里士多德关于维持运动的力、力的作用、落体运动等论断表示出怀疑,并提出了一些有意义的观点。巴黎大学校长布里丹(John Buridan,1295-1358)提出了“冲力”概念,冲力的强度用物体的速度和重量来量度,这与牛顿的动量已十分接近。布里丹的研究还涉及到惯性思想,将惯性看成是一种“内力”,这是后来牛顿也坚持的观点。在14世纪早期,牛津大学有一批学者开始对运动学问题进行探讨。他们定义了匀速运动(任何相等时间间隔内通过的距离相等)和匀加速运动(在所有相等的任意长度时间间隔内获得相等的速度增量),并且还尝试定义瞬时速度。另外还提出了平均速度定理,从而把匀加速运动转变成匀速运动进行计算。3.关于光学古希腊人十分重视光学的研究。希腊数学家欧基里德(Euclid,约前330-275)首先将几何知识引入光学研究并将光学看成几何学的一个分支(现称为几何光学)。他所著的《反射光学》一书中,研究了平面镜和球面镜成像问题,提出了反射角等于入射角的反射定律,还知道凹面镜的聚焦作用并假定焦点在球心与球面之间。他肯定了光是直线传播的,由此而研究投影现象,指出光源大小和物体大小不同,会产生不同的投影。此外,还给出了眼睛视线的定义:“从眼球发出的光线以直线传播,视线之间有彼此离开的现象”“视线包围的图样是以眼球为顶点、以被看外围大小为底的圆锥体”。关于折射现象,苏格拉底(Socrates,约前470-前399)和亚里士多德都有记述。天文学家托勒密(Ptolemy,100-170)系统地研究了光的折射,最先测定了光通过两种介质界面时的入射角和折射角。并且发现:当入射角很小时,折射角正比于入射角;入射角很大时,两者呈非线性关系。天文学家阿里斯塔克(Aristachus,约前310-前230)最先利用当时的光学知识进行天文数据的测量。例如,他测得日地间距离为月地间距离的20倍(实际上为400倍)、月亮直径约为地球直径的1/2(实际为1/4)、太阳直径约为地球直径的10倍(实际为100倍)。而且还提出了一个大胆的假设—日心说,即地球绕太阳旋转。尽管限于当时的知识使得测量计算的结果不好,但其物理思想是值得参考的。出生在北非的埃拉托色尼(Eratosthenes,前270-前196)利用光学技术测量计算出地球周长约39000千米,与现在的数据(40000千米)相差无几。阿拉伯学者阿勒-哈增(Al-Hazen,965-1038)写过一部《光学全书》,讨论了许多光学现象。他在托勒密的基础上进行了一系列研究。他反对托勒密关于眼睛发出光线才能看到物体的学说,认为光线是太阳或发光体发出并照射到物体上,眼睛接收到这些光线才看到物体。他对反射定律作了进一步的研究,指出入射线、反射线、法线都在同一平面。他研究过球面镜、抛物面镜、圆柱面镜,首先发明了凸透镜并进行实验研究,所得结果与近代凸透镜理论接近。英国的罗杰.培根(Roger Becon,1214-1294)是13世纪杰出的科学人物。他深入钻研古希腊和阿拉伯的学术著作,竭力主张通过科学实验来认识真理。他按照阿勒-哈增的书做过光学实验,并发明了暗室。他描述了光的反射定律和折射现象,研究了球面镜的像差。用光的折射解释了虹的成因,提出了用透镜校正视力和用透镜组构成望远镜的可能性。阿玛提(Armati,公元1299年)发明了眼镜。波特(G.B.D.Porta,1535-1615)研究成了暗箱并在《自然的魔法》一文中讨论了复合面镜及凸透镜和凸透镜的组合。到15世纪末,凹面镜、凸面镜、眼镜、透镜、暗箱和幻灯等光学元件已相继问世。4.关于其它物理学知识希腊人对电和磁了解不多。据说泰勒斯知道琥珀被摩擦后能吸引轻小物体,天然磁石可吸铁。卢克莱修用原子论对磁石吸铁进行解释,认为磁体发射出细微粒子流,撞击、驱散磁石和铁之间的空气,形成了真空,铁原子力求进入真空,因而表现出吸引。其它物体如金和木具有特殊结构,故不能被吸引。约在1269年,皮埃尔.德.马里古特(Pierre de Maricourt)写了一本描述磁力的书。他认识到,磁针断为两截,每一截又变成磁针异性磁极相吸、同性磁极相斥;铁与磁石摩擦可以磁化。认为磁针指向北极星而不是指向地球的北极。关于热现象,亚里士多德把热看成是物质元素的基本性质。原子论者认为热是物质流引起的,把火看作是由最轻、最滑、最活泼的粒子组成的。培根通过实验,发现了火药的成分。他还研究过蒸汽的作用并预言可造出蒸汽动力的航船、不用马拉的自动行进的车。关于声,亚里士多德把声音看作一种运动,认为发声的物体碰撞空气使之在各方向发生拉伸和压缩运动,从而发生传播,当碰到障碍时就象小球被反射一样产生回声。卢克莱修把声音视为物质流,声音的多样性取决于声粒子本身。罗马建筑师提出了建筑声学问题如声音的交混回响、回声与共鸣等。认为声音与水波不同,可以向四面八方传播。总而言之,从古代到15世纪,中国和西方关于对自然界物理现象的认识,既缺乏系统的科学实验,也未形成完备的科学理论体系,基本上处于对自然的有限观察和零星的记载阶段。一些物理现象的理论解释也受到局限,许多甚至是错误的,物理学在技术上的应用水平也是很低的,物理学仍属于哲学的范畴。尽管如此,古代物理学思想和一些思维方式对后来物理学新体系的建立和发展的影响仍然是非常重要的。